The ring of adèles of a function field #
We define the ring of finite adèles and the ring of adèles of a function field, both of which are topological commutative rings.
Main definitions #
function_field.A_F_f: The finite adèle ring of the function fieldF.function_field.A_F: The adèle ring of the function fieldF.function_field.inj_F_f: The map fromKtoA_F_f k Fsendingk ∈ K ↦ (k)_vfunction_field.inj_F: The map fromKtoA_F k Fsendingk ∈ K ↦ ((k)_v, 1 ⊗ k).
Main results #
function_field.inj_F_f.injective: The mapinj_F_fis injective.function_field.inj_F_f.ring_hom: The injectioninj_F_fis a ring homomorphism fromKtoA_F_f k F. Hence we can regardKas a subring ofA_F_f k F.function_field.inj_F.injective: The mapinj_Fis injective.function_field.inj_F.ring_hom: The injectioninj_Fis a ring homomorphism fromKtoA_F k F. Hence we can regardKas a subring ofA_F k F.
References #
Tags #
adèle ring, function field
The adèle ring of a function field #
We define the (finite) adèle ring of a function field F, with its topological ring structure.
The finite adèle ring of F.
Equations
The finite adèle ring of F.
Equations
- function_field.A_F k F = (function_field.A_F_f k F × kt_infty k ⊗ F)
F is isomorphic to k(t)^(dim_(F_q(t))(F)).
Equations
The natural linear map from k((t⁻¹))^n to k((t⁻¹)) ⊗[k(t)] k(t)^n.
The linear map from k((t⁻¹)) ⊗[k(t)] k(t)^(dim_(F_q(t))(F)) to k((t⁻¹)) ⊗[k(t)] F
obtained as a base change of linear_equiv.kt_basis.
The resulting linear map from k((t⁻¹))^(dim_(F_q(t))(F)) to k((t⁻¹)) ⊗[k(t)] F.
Equations
Equations
Equations
- function_field.A_F_f.inhabited k F = {default := 0}
Equations
- function_field.A_F.inhabited k F = {default := 0}
The topological ring structure on the infinite places of F.
Equations
The ring of integers of a function field is not a field.
There exists a nonzero prime ideal of the ring of integers of a function field.
Equations
- function_field.maximal_spectrum.inhabited k F = let M : ideal ↥(function_field.ring_of_integers k F) := classical.some _, hM : (classical.some _).is_maximal := _ in {default := {as_ideal := M, is_prime := _, ne_bot := _}}
The map from F to A_F_f k F sending x ∈ F ↦ (x)_v.
Equations
- function_field.inj_F_f k F = inj_K ↥(function_field.ring_of_integers k F) F
The injection inj_F_f is a ring homomorphism from F to A_F_f k F. Hence we can regard F
as a subring of A_F_f k F.
Equations
The map from F to A_F k F sending x ∈ F ↦ ((x)_v, 1 ⊗ x).
Equations
- function_field.inj_F k F = λ (x : F), (function_field.inj_F_f k F x, ⇑algebra.tensor_product.include_right x)
The injection inj_F is a ring homomorphism from F to A_F k F. Hence we can regard F
as a subring of A_F k F.