Exponent of a group #
This file defines the exponent of a group, or more generally a monoid. For a group G it is defined
to be the minimal n≥1 such that g ^ n = 1 for all g ∈ G. For a finite group G,
it is equal to the lowest common multiple of the order of all elements of the group G.
Main definitions #
monoid.exponent_existsis a predicate on a monoidGsaying that there is some positivensuch thatg ^ n = 1for allg ∈ G.monoid.exponentdefines the exponent of a monoidGas the minimal positivensuch thatg ^ n = 1for allg ∈ G, by convention it is0if no suchnexists.add_monoid.exponent_existsthe additive version ofmonoid.exponent_exists.add_monoid.exponentthe additive version ofmonoid.exponent.
Main results #
monoid.lcm_order_eq_exponent: For a finite left cancel monoidG, the exponent is equal to thefinset.lcmof the order of its elements.monoid.exponent_eq_supr_order_of('): For a commutative cancel monoid, the exponent is equal to⨆ g : G, order_of g(or zero if it has any order-zero elements).
TODO #
- Refactor the characteristic of a ring to be the exponent of its underlying additive group.
A predicate on an additive monoid saying that there is a positive integer n such
that n • g = 0 for all g.
A predicate on a monoid saying that there is a positive integer n such that g ^ n = 1
for all g.
The exponent of a group is the smallest positive integer n such that g ^ n = 1 for all
g ∈ G if it exists, otherwise it is zero by convention.
Equations
- monoid.exponent G = dite (monoid.exponent_exists G) (λ (h : monoid.exponent_exists G), nat.find h) (λ (h : ¬monoid.exponent_exists G), 0)
The exponent of an additive group is the smallest positive integer n such that
n • g = 0 for all g ∈ G if it exists, otherwise it is zero by convention.
Equations
- add_monoid.exponent G = dite (add_monoid.exponent_exists G) (λ (h : add_monoid.exponent_exists G), nat.find h) (λ (h : ¬add_monoid.exponent_exists G), 0)