Fraction ring / fraction field Frac(R) as localization #
Main definitions #
is_fraction_ring R Kexpresses thatKis a field of fractions ofR, as an abbreviation ofis_localization (non_zero_divisors R) K
Main results #
is_fraction_ring.field: a definition (not an instance) stating the localization of an integral domainRatR \ {0}is a fieldrat.is_fraction_ringis an instance statingℚis the field of fractions ofℤ
Implementation notes #
See src/ring_theory/localization/basic.lean for a design overview.
Tags #
localization, ring localization, commutative ring localization, characteristic predicate, commutative ring, field of fractions
is_fraction_ring R K states K is the field of fractions of an integral domain R.
The cast from int to rat as a fraction_ring.
A comm_ring K which is the localization of an integral domain R at R - {0} is an
integral domain.
The inverse of an element in the field of fractions of an integral domain.
Equations
- is_fraction_ring.inv A z = dite (z = 0) (λ (h : z = 0), 0) (λ (h : ¬z = 0), is_localization.mk' K ↑((is_localization.sec A⁰ z).snd) ⟨(is_localization.sec A⁰ z).fst, _⟩)
A comm_ring K which is the localization of an integral domain R at R - {0} is a field.
See note [reducible non-instances].
Equations
- is_fraction_ring.to_field A = {add := comm_ring.add (show comm_ring K, from _inst_7), add_assoc := _, zero := comm_ring.zero (show comm_ring K, from _inst_7), zero_add := _, add_zero := _, nsmul := comm_ring.nsmul (show comm_ring K, from _inst_7), nsmul_zero' := _, nsmul_succ' := _, neg := comm_ring.neg (show comm_ring K, from _inst_7), sub := comm_ring.sub (show comm_ring K, from _inst_7), sub_eq_add_neg := _, zsmul := comm_ring.zsmul (show comm_ring K, from _inst_7), zsmul_zero' := _, zsmul_succ' := _, zsmul_neg' := _, add_left_neg := _, add_comm := _, mul := comm_ring.mul (show comm_ring K, from _inst_7), mul_assoc := _, one := comm_ring.one (show comm_ring K, from _inst_7), one_mul := _, mul_one := _, npow := comm_ring.npow (show comm_ring K, from _inst_7), npow_zero' := _, npow_succ' := _, left_distrib := _, right_distrib := _, mul_comm := _, inv := is_fraction_ring.inv A _inst_11, div := div_inv_monoid.div._default comm_ring.mul is_fraction_ring.to_field._proof_20 comm_ring.one is_fraction_ring.to_field._proof_21 is_fraction_ring.to_field._proof_22 comm_ring.npow is_fraction_ring.to_field._proof_23 is_fraction_ring.to_field._proof_24 (is_fraction_ring.inv A), div_eq_mul_inv := _, zpow := div_inv_monoid.zpow._default comm_ring.mul is_fraction_ring.to_field._proof_26 comm_ring.one is_fraction_ring.to_field._proof_27 is_fraction_ring.to_field._proof_28 comm_ring.npow is_fraction_ring.to_field._proof_29 is_fraction_ring.to_field._proof_30 (is_fraction_ring.inv A), zpow_zero' := _, zpow_succ' := _, zpow_neg' := _, exists_pair_ne := _, mul_inv_cancel := _, inv_zero := _}
Given an integral domain A with field of fractions K,
and an injective ring hom g : A →+* L where L is a field, we get a
field hom sending z : K to g x * (g y)⁻¹, where (x, y) : A × (non_zero_divisors A) are
such that z = f x * (f y)⁻¹.
Equations
Given an integral domain A with field of fractions K,
and an injective ring hom g : A →+* L where L is a field,
the field hom induced from K to L maps x to g x for all
x : A.
Given an integral domain A with field of fractions K,
and an injective ring hom g : A →+* L where L is a field,
field hom induced from K to L maps f x / f y to g x / g y for all
x : A, y ∈ non_zero_divisors A.
Given integral domains A, B with fields of fractions K, L
and an injective ring hom j : A →+* B, we get a field hom
sending z : K to g (j x) * (g (j y))⁻¹, where (x, y) : A × (non_zero_divisors A) are
such that z = f x * (f y)⁻¹.
Equations
- is_fraction_ring.map hj = is_localization.map L j _
Given integral domains A, B and localization maps to their fields of fractions
f : A →+* K, g : B →+* L, an isomorphism j : A ≃+* B induces an isomorphism of
fields of fractions K ≃+* L.
Equations
The fraction ring of a commutative ring R as a quotient type.
We instantiate this definition as generally as possible, and assume that the
commutative ring R is an integral domain only when this is needed for proving.
Equations
Equations
Equations
- fraction_ring.field = {add := has_add.add localization.has_add, add_assoc := _, zero := 0, zero_add := _, add_zero := _, nsmul := add_monoid.nsmul (sub_neg_monoid.to_add_monoid (fraction_ring A)), nsmul_zero' := _, nsmul_succ' := _, neg := has_neg.neg localization.has_neg, sub := has_sub.sub (sub_neg_monoid.to_has_sub (fraction_ring A)), sub_eq_add_neg := _, zsmul := sub_neg_monoid.zsmul (add_group.to_sub_neg_monoid (fraction_ring A)), zsmul_zero' := _, zsmul_succ' := _, zsmul_neg' := _, add_left_neg := _, add_comm := _, mul := has_mul.mul (localization.has_mul A⁰), mul_assoc := _, one := 1, one_mul := _, mul_one := _, npow := localization.npow A⁰, npow_zero' := _, npow_succ' := _, left_distrib := _, right_distrib := _, mul_comm := _, inv := field.inv (is_fraction_ring.to_field A), div := field.div (is_fraction_ring.to_field A), div_eq_mul_inv := _, zpow := field.zpow (is_fraction_ring.to_field A), zpow_zero' := _, zpow_succ' := _, zpow_neg' := _, exists_pair_ne := _, mul_inv_cancel := _, inv_zero := _}
Equations
Given an integral domain A and a localization map to a field of fractions
f : A →+* K, we get an A-isomorphism between the field of fractions of A as a quotient
type and K.