The ring of adèles of a number field #
We define the ring of finite adèles and the ring of adèles of a number field, both of which are topological commutative rings.
Main definitions #
number_field.A_K_f: The finite adèle ring of the number fieldK.number_field.A_K: The adèle ring of the number fieldK.number_field.inj_K_f: The map fromKtoA_K_f Ksendingk ∈ K ↦ (k)_vnumber_field.inj_K: The map fromKtoA_K Ksendingk ∈ K ↦ ((k)_v, 1 ⊗ k).
Main results #
number_field.inj_K_f.injective: The mapinj_K_fis injective.number_field.inj_K_f.ring_hom: The injectioninj_K_fis a ring homomorphism fromKtoA_K_f K. Hence we can regardKas a subring ofA_K_f K.number_field.inj_K.injective: The mapinj_Kis injective.number_field.inj_K.ring_hom: The injectioninj_Kis a ring homomorphism fromKtoA_K K. Hence we can regardKas a subring ofA_K K.
References #
Tags #
adèle ring, number field
The adèle ring of a number field #
We define the (finite) adèle ring of a number field K, with its topological ring structure.
The finite adèle ring of K.
Equations
- number_field.A_K_f K = finite_adele_ring' ↥(𝓞 K) K
The adèle ring of K.
Equations
- number_field.A_K K = (number_field.A_K_f K × ℝ ⊗ K)
Equations
Equations
K is isomorphic to ℚ^(dim_ℚ(K)).
Equations
The natural linear map from ℝ^n to ℝ ⊗[ℚ] ℚ^n.
The map ℝ ⊗[ℚ] ℚ^(dim_ℚ(K)) → ℝ ⊗[ℚ] K obtained as a base change of linear_equiv.Q_basis.
The resulting linear map from ℝ^(dim_ℚ(K)) to ℝ ⊗[ℚ] K.
Equations
Equations
Equations
- number_field.A_K_f.inhabited K = {default := 0}
Equations
- number_field.A_K.inhabited K = {default := 0}
Equations
The topological ring structure on ℝ ⊗[ℚ] K.
The ring of integers of a number field is not a field.
There exists a nonzero prime ideal of the ring of integers of a number field.
Equations
- number_field.maximal_spectrum.inhabited K = let M : ideal ↥(𝓞 K) := classical.some _, hM : (classical.some _).is_maximal := _ in {default := {as_ideal := M, is_prime := _, ne_bot := _}}
The map from K to A_K_f K sending k ∈ K ↦ (k)_v.
Equations
- number_field.inj_K_f K = inj_K ↥(𝓞 K) K
The injection inj_K_f is a ring homomorphism from K to A_K_f K. Hence we can regard K
as a subring of A_K_f K.
Equations
The map from K to A_K K sending k ∈ K ↦ ((k)_v, 1 ⊗ k).
Equations
- number_field.inj_K K = λ (x : K), (number_field.inj_K_f K x, ⇑algebra.tensor_product.include_right x)
The injection inj_K is a ring homomorphism from K to A_K K. Hence we can regard K
as a subring of A_K K.