Relations holding pairwise #
This file defines pairwise relations and pairwise disjoint indexed sets.
Main declarations #
pairwise:pairwise rstates thatr i jfor alli ≠ j.set.pairwise:s.pairwise rstates thatr i jfor alli ≠ jwithi, j ∈ s.set.pairwise_disjoint:s.pairwise_disjoint fstates that images underfof distinct elements ofsare either equal ordisjoint.
Notes #
The spelling s.pairwise_disjoint id is preferred over s.pairwise disjoint to permit dot notation
on set.pairwise_disjoint, even though the latter unfolds to something nicer.
Alias of function.injective_iff_pairwise_ne.
For a nonempty set s, a function f takes pairwise equal values on s if and only if
for some z in the codomain, f takes value z on all x ∈ s. See also
set.pairwise_eq_iff_exists_eq for a version that assumes [nonempty ι] instead of
set.nonempty s.
A function f : α → ι with nonempty codomain takes pairwise equal values on a set s if and
only if for some z in the codomain, f takes value z on all x ∈ s. See also
set.nonempty.pairwise_eq_iff_exists_eq for a version that assumes set.nonempty s instead of
[nonempty ι].
Alias of pairwise_subtype_iff_pairwise_set.
Alias of pairwise_subtype_iff_pairwise_set.
A set is pairwise_disjoint under f, if the images of any distinct two elements under f
are disjoint.
s.pairwise disjoint is (definitionally) the same as s.pairwise_disjoint id. We prefer the latter
in order to allow dot notation on set.pairwise_disjoint, even though the former unfolds more
nicely.
Equations
- s.pairwise_disjoint f = s.pairwise (disjoint on f)
Bind operation for set.pairwise_disjoint. If you want to only consider finsets of indices, you
can use set.pairwise_disjoint.bUnion_finset.
Pairwise disjoint set of sets #
Equivalence between a disjoint bounded union and a dependent sum.
Equations
- set.bUnion_eq_sigma_of_disjoint h = (equiv.set_congr set.bUnion_eq_sigma_of_disjoint._proof_1).trans (set.Union_eq_sigma_of_disjoint _)