Complete lattice homomorphisms #
This file defines frame homorphisms and complete lattice homomorphisms.
We use the fun_like design, so each type of morphisms has a companion typeclass which is meant to
be satisfied by itself and all stricter types.
Types of morphisms #
Sup_hom: Maps which preserve⨆.Inf_hom: Maps which preserve⨅.frame_hom: Frame homomorphisms. Maps which preserve⨆,⊓and⊤.complete_lattice_hom: Complete lattice homomorphisms. Maps which preserve⨆and⨅.
Typeclasses #
Concrete homs #
complete_lattice.set_preimage:set.preimageas a complete lattice homomorphism.
- to_inf_top_hom : inf_top_hom α β
- map_Sup' : ∀ (s : set α), self.to_inf_top_hom.to_inf_hom.to_fun (Sup s) = Sup (self.to_inf_top_hom.to_inf_hom.to_fun '' s)
The type of frame homomorphisms from α to β. They preserve finite meets and arbitrary joins.
- to_Inf_hom : Inf_hom α β
- map_Sup' : ∀ (s : set α), self.to_Inf_hom.to_fun (Sup s) = Sup (self.to_Inf_hom.to_fun '' s)
The type of complete lattice homomorphisms from α to β.
- to_fun_like : fun_like F α (λ (_x : α), β)
- map_Sup : ∀ (f : F) (s : set α), ⇑f (Sup s) = Sup (⇑f '' s)
Sup_hom_class F α β states that F is a type of ⨆-preserving morphisms.
You should extend this class when you extend Sup_hom.
- to_fun_like : fun_like F α (λ (_x : α), β)
- map_Inf : ∀ (f : F) (s : set α), ⇑f (Inf s) = Inf (⇑f '' s)
Inf_hom_class F α β states that F is a type of ⨅-preserving morphisms.
You should extend this class when you extend Inf_hom.
- to_inf_top_hom_class : inf_top_hom_class F α β
- map_Sup : ∀ (f : F) (s : set α), ⇑f (Sup s) = Sup (⇑f '' s)
frame_hom_class F α β states that F is a type of frame morphisms. They preserve ⊓ and ⨆.
You should extend this class when you extend frame_hom.
complete_lattice_hom_class F α β states that F is a type of complete lattice morphisms.
You should extend this class when you extend complete_lattice_hom.
Equations
- Sup_hom_class.to_sup_bot_hom_class = {to_sup_hom_class := {to_fun_like := Sup_hom_class.to_fun_like _inst_3, map_sup := _}, map_bot := _}
Equations
- Inf_hom_class.to_inf_top_hom_class = {to_inf_hom_class := {to_fun_like := Inf_hom_class.to_fun_like _inst_3, map_inf := _}, map_top := _}
Equations
Equations
Equations
- frame_hom.has_coe_t = {coe := λ (f : F), {to_inf_top_hom := ↑f, map_Sup' := _}}
Equations
- complete_lattice_hom.has_coe_t = {coe := λ (f : F), {to_Inf_hom := ↑f, map_Sup' := _}}
Supremum homomorphisms #
Equations
- Sup_hom.Sup_hom_class = {to_fun_like := {coe := Sup_hom.to_fun _inst_2, coe_injective' := _}, map_Sup := _}
Helper instance for when there's too many metavariables to apply fun_like.has_coe_to_fun
directly.
Equations
Equations
- Sup_hom.inhabited α = {default := Sup_hom.id α _inst_1}
Equations
- Sup_hom.partial_order = partial_order.lift coe_fn Sup_hom.partial_order._proof_1
Infimum homomorphisms #
Equations
- Inf_hom.Inf_hom_class = {to_fun_like := {coe := Inf_hom.to_fun _inst_2, coe_injective' := _}, map_Inf := _}
Helper instance for when there's too many metavariables to apply fun_like.has_coe_to_fun
directly.
Equations
Equations
- Inf_hom.inhabited α = {default := Inf_hom.id α _inst_1}
Equations
- Inf_hom.partial_order = partial_order.lift coe_fn Inf_hom.partial_order._proof_1
Frame homomorphisms #
Equations
- frame_hom.frame_hom_class = {to_inf_top_hom_class := {to_inf_hom_class := {to_fun_like := {coe := λ (f : frame_hom α β), f.to_inf_top_hom.to_inf_hom.to_fun, coe_injective' := _}, map_inf := _}, map_top := _}, map_Sup := _}
Helper instance for when there's too many metavariables to apply fun_like.has_coe_to_fun
directly.
Equations
Reinterpret a frame_hom as a lattice_hom.
Equations
- f.to_lattice_hom = ↑f
Copy of a frame_hom with a new to_fun equal to the old one. Useful to fix definitional
equalities.
Equations
- f.copy f' h = {to_inf_top_hom := f.to_inf_top_hom.copy f' h, map_Sup' := _}
Equations
- frame_hom.id α = {to_inf_top_hom := inf_top_hom.id α (complete_lattice.to_has_top α), map_Sup' := _}
Equations
- frame_hom.inhabited α = {default := frame_hom.id α _inst_1}
Composition of frame_homs as a frame_hom.
Equations
- f.comp g = {to_inf_top_hom := f.to_inf_top_hom.comp g.to_inf_top_hom, map_Sup' := _}
Equations
- frame_hom.partial_order = partial_order.lift coe_fn frame_hom.partial_order._proof_1
Complete lattice homomorphisms #
Equations
- complete_lattice_hom.complete_lattice_hom_class = {to_Inf_hom_class := {to_fun_like := {coe := λ (f : complete_lattice_hom α β), f.to_Inf_hom.to_fun, coe_injective' := _}, map_Inf := _}, map_Sup := _}
Reinterpret a complete_lattice_hom as a Sup_hom.
Equations
- f.to_Sup_hom = ↑f
Reinterpret a complete_lattice_hom as a bounded_lattice_hom.
Equations
Helper instance for when there's too many metavariables to apply fun_like.has_coe_to_fun
directly.
Copy of a complete_lattice_hom with a new to_fun equal to the old one. Useful to fix
definitional equalities.
Equations
- f.copy f' h = {to_Inf_hom := f.to_Inf_hom.copy f' h, map_Sup' := _}
id as a complete_lattice_hom.
Equations
- complete_lattice_hom.id α = {to_Inf_hom := {to_fun := id α, map_Inf' := _}, map_Sup' := _}
Equations
- complete_lattice_hom.inhabited α = {default := complete_lattice_hom.id α _inst_1}
Composition of complete_lattice_homs as a complete_lattice_hom.
Equations
- f.comp g = {to_Inf_hom := f.to_Inf_hom.comp g.to_Inf_hom, map_Sup' := _}
Dual homs #
Reinterpret a ⨆-homomorphism as an ⨅-homomorphism between the dual orders.
Equations
- Sup_hom.dual = {to_fun := λ (f : Sup_hom α β), {to_fun := ⇑order_dual.to_dual ∘ ⇑f ∘ ⇑order_dual.of_dual, map_Inf' := _}, inv_fun := λ (f : Inf_hom (order_dual α) (order_dual β)), {to_fun := ⇑order_dual.of_dual ∘ ⇑f ∘ ⇑order_dual.to_dual, map_Sup' := _}, left_inv := _, right_inv := _}
Reinterpret an ⨅-homomorphism as a ⨆-homomorphism between the dual orders.
Equations
- Inf_hom.dual = {to_fun := λ (f : Inf_hom α β), {to_fun := ⇑order_dual.to_dual ∘ ⇑f ∘ ⇑order_dual.of_dual, map_Sup' := _}, inv_fun := λ (f : Sup_hom (order_dual α) (order_dual β)), {to_fun := ⇑order_dual.of_dual ∘ ⇑f ∘ ⇑order_dual.to_dual, map_Inf' := _}, left_inv := _, right_inv := _}
Reinterpret a complete lattice homomorphism as a complete lattice homomorphism between the dual lattices.
Equations
- complete_lattice_hom.dual = {to_fun := λ (f : complete_lattice_hom α β), {to_Inf_hom := ⇑Sup_hom.dual f.to_Sup_hom, map_Sup' := _}, inv_fun := λ (f : complete_lattice_hom (order_dual α) (order_dual β)), {to_Inf_hom := ⇑Sup_hom.dual f.to_Sup_hom, map_Sup' := _}, left_inv := _, right_inv := _}
Concrete homs #
set.preimage as a complete lattice homomorphism.
Equations
- complete_lattice_hom.set_preimage f = {to_Inf_hom := {to_fun := set.preimage f, map_Inf' := _}, map_Sup' := _}