Neighborhoods of a set #
In this file we define the filter 𝓝ˢ s or nhds_set s consisting of all neighborhoods of a set
s.
Main Properties #
There are a couple different notions equivalent to s ∈ 𝓝ˢ t:
s ⊆ interior tusingsubset_interior_iff_mem_nhds_set∀ (x : α), x ∈ t → s ∈ 𝓝 xusingmem_nhds_set_iff_forall∃ U : set α, is_open U ∧ t ⊆ U ∧ U ⊆ susingmem_nhds_set_iff_exists
Furthermore, we have the following results:
monotone_nhds_set:𝓝ˢis monotone- In T₁-spaces,
𝓝ˢis strictly monotone and hence injective:strict_mono_nhds_set/injective_nhds_set. These results are intopology.separation.
@[simp]
@[simp]