mathlib documentation

ideles / adeles_function_field

The ring of adèles of a function field #

We define the ring of finite adèles and the ring of adèles of a function field, both of which are topological commutative rings.

Main definitions #

Main results #

References #

Tags #

adèle ring, function field

The adèle ring of a function field #

We define the (finite) adèle ring of a function field F, with its topological ring structure.

def function_field.A_F_f (k F : Type) [field k] [field F] [algebra k[X] F] [algebra (ratfunc k) F] [function_field k F] [is_scalar_tower k[X] (ratfunc k) F] [is_separable (ratfunc k) F] :
Type

The finite adèle ring of F.

Equations
def function_field.A_F (k F : Type) [field k] [field F] [algebra k[X] F] [algebra (ratfunc k) F] [function_field k F] [is_scalar_tower k[X] (ratfunc k) F] [is_separable (ratfunc k) F] :
Type

The finite adèle ring of F.

Equations

F is isomorphic to k(t)^(dim_(F_q(t))(F)).

Equations
noncomputable def function_field.linear_map.kt_inftyn_to_kt_infty_tensor_ktn (k : Type) [field k] (n : ) :

The natural linear map from k((t⁻¹))^n to k((t⁻¹)) ⊗[k(t)] k(t)^n.

Equations

The linear map from k((t⁻¹)) ⊗[k(t)] k(t)^(dim_(F_q(t))(F)) to k((t⁻¹)) ⊗[k(t)] F obtained as a base change of linear_equiv.kt_basis.

Equations
@[protected, instance]
noncomputable def function_field.A_F.comm_ring (k F : Type) [field k] [field F] [algebra k[X] F] [algebra (ratfunc k) F] [function_field k F] [is_scalar_tower k[X] (ratfunc k) F] [is_separable (ratfunc k) F] :
Equations
@[protected, instance]
Equations
@[protected, instance]
noncomputable def function_field.A_F.inhabited (k F : Type) [field k] [field F] [algebra k[X] F] [algebra (ratfunc k) F] [function_field k F] [is_scalar_tower k[X] (ratfunc k) F] [is_separable (ratfunc k) F] :
Equations
theorem function_field.kX_not_is_field (k : Type) [field k] :

The ring of integers of polynomials over k is not a field.

The ring of integers of a function field is not a field.

@[protected, instance]

There exists a nonzero prime ideal of the ring of integers of a function field.

Equations
noncomputable def function_field.inj_F_f (k F : Type) [field k] [field F] [algebra k[X] F] [algebra (ratfunc k) F] [function_field k F] [is_scalar_tower k[X] (ratfunc k) F] [is_separable (ratfunc k) F] :

The map from F to A_F_f k F sending x ∈ F ↦ (x)_v.

Equations
noncomputable def function_field.inj_F_f.ring_hom (k F : Type) [field k] [field F] [algebra k[X] F] [algebra (ratfunc k) F] [function_field k F] [is_scalar_tower k[X] (ratfunc k) F] [is_separable (ratfunc k) F] :

The injection inj_F_f is a ring homomorphism from F to A_F_f k F. Hence we can regard F as a subring of A_F_f k F.

Equations
noncomputable def function_field.inj_F (k F : Type) [field k] [field F] [algebra k[X] F] [algebra (ratfunc k) F] [function_field k F] [is_scalar_tower k[X] (ratfunc k) F] [is_separable (ratfunc k) F] :

The map from F to A_F k F sending x ∈ F ↦ ((x)_v, 1 ⊗ x).

Equations
noncomputable def function_field.inj_F.ring_hom (k F : Type) [field k] [field F] [algebra k[X] F] [algebra (ratfunc k) F] [function_field k F] [is_scalar_tower k[X] (ratfunc k) F] [is_separable (ratfunc k) F] :

The injection inj_F is a ring homomorphism from F to A_F k F. Hence we can regard F as a subring of A_F k F.

Equations