The ring of adèles of a function field #
We define the ring of finite adèles and the ring of adèles of a function field, both of which are topological commutative rings.
Main definitions #
function_field.A_F_f
: The finite adèle ring of the function fieldF
.function_field.A_F
: The adèle ring of the function fieldF
.function_field.inj_F_f
: The map fromK
toA_F_f k F
sendingk ∈ K ↦ (k)_v
function_field.inj_F
: The map fromK
toA_F k F
sendingk ∈ K ↦ ((k)_v, 1 ⊗ k)
.
Main results #
function_field.inj_F_f.injective
: The mapinj_F_f
is injective.function_field.inj_F_f.ring_hom
: The injectioninj_F_f
is a ring homomorphism fromK
toA_F_f k F
. Hence we can regardK
as a subring ofA_F_f k F
.function_field.inj_F.injective
: The mapinj_F
is injective.function_field.inj_F.ring_hom
: The injectioninj_F
is a ring homomorphism fromK
toA_F k F
. Hence we can regardK
as a subring ofA_F k F
.
References #
Tags #
adèle ring, function field
The adèle ring of a function field #
We define the (finite) adèle ring of a function field F
, with its topological ring structure.
The finite adèle ring of F
.
Equations
The finite adèle ring of F
.
Equations
- function_field.A_F k F = (function_field.A_F_f k F × kt_infty k ⊗ F)
F
is isomorphic to k(t)^(dim_(F_q(t))(F))
.
Equations
The natural linear map from k((t⁻¹))^n
to k((t⁻¹)) ⊗[k(t)] k(t)^n
.
The linear map from k((t⁻¹)) ⊗[k(t)] k(t)^(dim_(F_q(t))(F))
to k((t⁻¹)) ⊗[k(t)] F
obtained as a base change of linear_equiv.kt_basis
.
The resulting linear map from k((t⁻¹))^(dim_(F_q(t))(F))
to k((t⁻¹)) ⊗[k(t)] F
.
Equations
Equations
Equations
- function_field.A_F_f.inhabited k F = {default := 0}
Equations
- function_field.A_F.inhabited k F = {default := 0}
The topological ring structure on the infinite places of F
.
Equations
The ring of integers of a function field is not a field.
There exists a nonzero prime ideal of the ring of integers of a function field.
Equations
- function_field.maximal_spectrum.inhabited k F = let M : ideal ↥(function_field.ring_of_integers k F) := classical.some _, hM : (classical.some _).is_maximal := _ in {default := {as_ideal := M, is_prime := _, ne_bot := _}}
The map from F
to A_F_f k F
sending x ∈ F ↦ (x)_v
.
Equations
- function_field.inj_F_f k F = inj_K ↥(function_field.ring_of_integers k F) F
The injection inj_F_f
is a ring homomorphism from F
to A_F_f k F
. Hence we can regard F
as a subring of A_F_f k F
.
Equations
The map from F
to A_F k F
sending x ∈ F ↦ ((x)_v, 1 ⊗ x)
.
Equations
- function_field.inj_F k F = λ (x : F), (function_field.inj_F_f k F x, ⇑algebra.tensor_product.include_right x)
The injection inj_F
is a ring homomorphism from F
to A_F k F
. Hence we can regard F
as a subring of A_F k F
.