Results on direct sums and finitely supported functions. #
- The linear equivalence between finitely supported functions
ι →₀ M
and the direct sum of copies ofM
indexed byι
.
noncomputable
def
finsupp_lequiv_direct_sum
(R : Type u)
(M : Type v)
[ring R]
[add_comm_group M]
[module R M]
(ι : Type u_1)
[decidable_eq ι] :
The finitely supported functions ι →₀ M
are in linear equivalence with the direct sum of
copies of M indexed by ι.
Equations
@[simp]
theorem
finsupp_lequiv_direct_sum_single
(R : Type u)
(M : Type v)
[ring R]
[add_comm_group M]
[module R M]
(ι : Type u_1)
[decidable_eq ι]
(i : ι)
(m : M) :
⇑(finsupp_lequiv_direct_sum R M ι) (finsupp.single i m) = ⇑(direct_sum.lof R ι (λ (i : ι), M) i) m
@[simp]
theorem
finsupp_lequiv_direct_sum_symm_lof
(R : Type u)
(M : Type v)
[ring R]
[add_comm_group M]
[module R M]
(ι : Type u_1)
[decidable_eq ι]
(i : ι)
(m : M) :
⇑((finsupp_lequiv_direct_sum R M ι).symm) (⇑(direct_sum.lof R ι (λ (i : ι), M) i) m) = finsupp.single i m