mathlib documentation

ideles / ideles_R

The finite idèle group of a Dedekind domain #

We define the finite idèle group of a Dedekind domain R and show that if R has Krull dimension 1, then there is an injective group homomorphism from the units of the field of fractions of R to its finite adèle ring.

We prove that there is a continuous surjective group homomorphism from the finite idèle group of R to the group of invertible fractional ideals of R and compute the kernel of this map.

Main definitions #

Main results #

Implementation notes #

As in adeles_R, we are only interested on Dedekind domains of Krull dimension 1.

References #

Tags #

finite idèle group, dedekind domain, fractional ideal

The finite idèle group of a Dedekind domain #

def finite_idele_group' (R K : Type) [comm_ring R] [is_domain R] [is_dedekind_domain R] [field K] [algebra R K] [is_fraction_ring R K] :
Type

The finite idèle group of R is the unit group of its finite adèle ring.

Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
theorem right_inv (R K : Type) [comm_ring R] [is_domain R] [is_dedekind_domain R] [field K] [algebra R K] [is_fraction_ring R K] (x : Kˣ) :
(inj_K R K x.val) * inj_K R K x.inv = 1
theorem left_inv (R K : Type) [comm_ring R] [is_domain R] [is_dedekind_domain R] [field K] [algebra R K] [is_fraction_ring R K] (x : Kˣ) :
(inj_K R K x.inv) * inj_K R K x.val = 1
noncomputable def inj_units_K (R K : Type) [comm_ring R] [is_domain R] [is_dedekind_domain R] [field K] [algebra R K] [is_fraction_ring R K] :

The diagonal inclusion k ↦ (k)_v of K* into the finite idèle group of R.

Equations
@[simp]
theorem inj_units_K.map_one (R K : Type) [comm_ring R] [is_domain R] [is_dedekind_domain R] [field K] [algebra R K] [is_fraction_ring R K] :
inj_units_K R K 1 = 1
@[simp]
theorem inj_units_K.map_mul (R K : Type) [comm_ring R] [is_domain R] [is_dedekind_domain R] [field K] [algebra R K] [is_fraction_ring R K] (x y : Kˣ) :
inj_units_K R K (x * y) = (inj_units_K R K x) * inj_units_K R K y
noncomputable def inj_units_K.group_hom (R K : Type) [comm_ring R] [is_domain R] [is_dedekind_domain R] [field K] [algebra R K] [is_fraction_ring R K] :

The map inj_units_K is a group homomorphism.

Equations

If maximal_spectrum R is nonempty, then inj_units_K is injective. Note that the nonemptiness hypothesis is satisfied for every Dedekind domain that is not a field.

theorem prod_val_inv_eq_one (R K : Type) [comm_ring R] [is_domain R] [is_dedekind_domain R] [field K] [algebra R K] [is_fraction_ring R K] (v : maximal_spectrum R) (x : finite_idele_group' R K) :
(x.val.val v) * x.inv.val v = 1
theorem v_comp.ne_zero (R K : Type) [comm_ring R] [is_domain R] [is_dedekind_domain R] [field K] [algebra R K] [is_fraction_ring R K] (v : maximal_spectrum R) (x : finite_idele_group' R K) :
x.val.val v 0

For any finite idèle x, there are finitely many maximal ideals v of R for which x_v ∉ R_v or x⁻¹_v ∉ R_v.

theorem finite_exponents (R K : Type) [comm_ring R] [is_domain R] [is_dedekind_domain R] [field K] [algebra R K] [is_fraction_ring R K] (x : finite_idele_group' R K) :

For any finite idèle x, there are finitely many maximal ideals v of R for which |x_v|_v ≠ 1.

theorem units.valuation_ne_zero (R K : Type) [comm_ring R] [is_domain R] [is_dedekind_domain R] [field K] [algebra R K] [is_fraction_ring R K] (v : maximal_spectrum R) {k : K} (hk : k 0) :

For any k ∈ K* and any maximal ideal v of R, the valuation |k|_v is nonzero.

noncomputable def with_zero.to_integer {x : with_zero (multiplicative )} (hx : x 0) :

The integer number corresponding to a nonzero x in with_zero (multiplicative ℤ).

Equations
noncomputable def finite_idele.to_add_valuations (R K : Type) [comm_ring R] [is_domain R] [is_dedekind_domain R] [field K] [algebra R K] [is_fraction_ring R K] (x : finite_idele_group' R K) (v : maximal_spectrum R) :

Given a finite idèle x, for each maximal ideal v of R we obtain an integer that represents the additive v-adic valuation of the component x_v of x.

Equations

For any finite idèle x, there are finitely many maximal ideals v of R for which the additive v-adic valuation of x_v is nonzero.

For any finite idèle x, there are finitely many maximal ideals v of R for which v^(finite_idele.to_add_valuations R K x v) is not the fractional ideal (1).

For any finite idèle x, there are finitely many maximal ideals v of R for which v^-(finite_idele.to_add_valuations R K x v) is not the fractional ideal (1).

The map from finite_idele_group' R K to the fractional_ideals of R sending a finite idèle x to the product ∏_v v^(val_v(x_v)), where val_v denotes the additive v-adic valuation.

Equations

The group homomorphism from finite_idele_group' R K to the fractional_ideals of R sending a finite idèle x to the product ∏_v v^(val_v(x_v))

Equations

The map from finite_idele_group' R K to the fractional_ideals of R sending a finite idèle x to the product ∏_v v^-(val_v(x_v)), where val_v denotes the additive v-adic valuation.

Equations

The map from finite_idele_group' R K to the units of the fractional_ideals of R sending a finite idèle x to the product ∏_v v^(val_v(x_v)), where val_v denotes the additive v-adic valuation.

Equations
theorem right_inv' {R K : Type} [comm_ring R] [is_domain R] [is_dedekind_domain R] [field K] [algebra R K] [is_fraction_ring R K] {a : Π (v : maximal_spectrum R), maximal_spectrum.adic_completion K v} (ha : ∀ᶠ (v : maximal_spectrum R) in filter.cofinite, valued.v (a v) = 1) (h_ne_zero : ∀ (v : maximal_spectrum R), a v 0) :
a, _⟩ * λ (v : maximal_spectrum R), (a v)⁻¹, _⟩ = 1
theorem left_inv' {R K : Type} [comm_ring R] [is_domain R] [is_dedekind_domain R] [field K] [algebra R K] [is_fraction_ring R K] {a : Π (v : maximal_spectrum R), maximal_spectrum.adic_completion K v} (ha : ∀ᶠ (v : maximal_spectrum R) in filter.cofinite, valued.v (a v) = 1) (h_ne_zero : ∀ (v : maximal_spectrum R), a v 0) :
λ (v : maximal_spectrum R), (a v)⁻¹, _⟩ * a, _⟩ = 1
noncomputable def idele.mk {R K : Type} [comm_ring R] [is_domain R] [is_dedekind_domain R] [field K] [algebra R K] [is_fraction_ring R K] (a : Π (v : maximal_spectrum R), maximal_spectrum.adic_completion K v) (ha : ∀ᶠ (v : maximal_spectrum R) in filter.cofinite, valued.v (a v) = 1) (h_ne_zero : ∀ (v : maximal_spectrum R), a v 0) :

If a = (a_v)_v ∈ ∏_v K_v is such that |a_v|_v ≠ 1 for all but finitely many v and a_v ≠ 0 for all v, then a is a finite idèle of R.

Equations
noncomputable def pi.unif (R K : Type) [comm_ring R] [is_domain R] [is_dedekind_domain R] [field K] [algebra R K] [is_fraction_ring R K] (v : maximal_spectrum R) :

A finite idèle (pi_v)_v, where each pi_v is a uniformizer for the v-adic valuation.

Equations
theorem pi.unif.ne_zero (R K : Type) [comm_ring R] [is_domain R] [is_dedekind_domain R] [field K] [algebra R K] [is_fraction_ring R K] (v : maximal_spectrum R) :
pi.unif R K v 0
theorem idele.mk'.val {R K : Type} [comm_ring R] [is_domain R] [is_dedekind_domain R] [field K] [algebra R K] [is_fraction_ring R K] {exps : maximal_spectrum R} (h_exps : ∀ᶠ (v : maximal_spectrum R) in filter.cofinite, exps v = 0) :
theorem idele.mk'.inv {R K : Type} [comm_ring R] [is_domain R] [is_dedekind_domain R] [field K] [algebra R K] [is_fraction_ring R K] {exps : maximal_spectrum R} (h_exps : ∀ᶠ (v : maximal_spectrum R) in filter.cofinite, exps v = 0) :
theorem idele.mk'.mul_inv {R K : Type} [comm_ring R] [is_domain R] [is_dedekind_domain R] [field K] [algebra R K] [is_fraction_ring R K] {exps : maximal_spectrum R} (h_exps : ∀ᶠ (v : maximal_spectrum R) in filter.cofinite, exps v = 0) :
λ (v : maximal_spectrum R), pi.unif R K v ^ exps v, _⟩ * λ (v : maximal_spectrum R), pi.unif R K v ^ -exps v, _⟩ = 1
theorem idele.mk'.inv_mul {R K : Type} [comm_ring R] [is_domain R] [is_dedekind_domain R] [field K] [algebra R K] [is_fraction_ring R K] {exps : maximal_spectrum R} (h_exps : ∀ᶠ (v : maximal_spectrum R) in filter.cofinite, exps v = 0) :
λ (v : maximal_spectrum R), pi.unif R K v ^ -exps v, _⟩ * λ (v : maximal_spectrum R), pi.unif R K v ^ exps v, _⟩ = 1
noncomputable def idele.mk' (R K : Type) [comm_ring R] [is_domain R] [is_dedekind_domain R] [field K] [algebra R K] [is_fraction_ring R K] {exps : maximal_spectrum R} (h_exps : ∀ᶠ (v : maximal_spectrum R) in filter.cofinite, exps v = 0) :

Given a collection exps of integers indexed by the maximal ideals v of R, of which only finitely many are allowed to be nonzero, (pi_v^(exps v))_v is a finite idèle of R.

Equations
theorem idele.mk'.valuation_ne_zero {R K : Type} [comm_ring R] [is_domain R] [is_dedekind_domain R] [field K] [algebra R K] [is_fraction_ring R K] (v : maximal_spectrum R) {exps : maximal_spectrum R} (h_exps : ∀ᶠ (v : maximal_spectrum R) in filter.cofinite, exps v = 0) :
valued.v ((idele.mk' R K h_exps).val.val v) 0

A finite idèle x is in the kernel of map_to_fractional_ideals if and only if |x_v|_v = 1 for all v.

The additive v-adic valuation of x_v equals 0 if and only if |x_v|_v = 1

|x_v|_v = 1 if and only if both x_v and x⁻¹_v are in R_v.

map_to_fractional_ideals is continuous, where the codomain is given the discrete topology.