mathlib documentation

ring_theory.polynomial.content

GCD structures on polynomials #

Definitions and basic results about polynomials over GCD domains, particularly their contents and primitive polynomials.

Main Definitions #

Let p : R[X].

Main Results #

def polynomial.is_primitive {R : Type u_1} [comm_semiring R] (p : R[X]) :
Prop

A polynomial is primitive when the only constant polynomials dividing it are units

Equations
theorem polynomial.is_primitive_iff_is_unit_of_C_dvd {R : Type u_1} [comm_semiring R] {p : R[X]} :
p.is_primitive ∀ (r : R), polynomial.C r pis_unit r
@[simp]
theorem polynomial.is_primitive_one {R : Type u_1} [comm_semiring R] :
theorem polynomial.monic.is_primitive {R : Type u_1} [comm_semiring R] {p : R[X]} (hp : p.monic) :
theorem polynomial.is_primitive.ne_zero {R : Type u_1} [comm_semiring R] [nontrivial R] {p : R[X]} (hp : p.is_primitive) :
p 0
def polynomial.content {R : Type u_1} [comm_ring R] [is_domain R] [normalized_gcd_monoid R] (p : R[X]) :
R

p.content is the gcd of the coefficients of p.

Equations
theorem polynomial.content_dvd_coeff {R : Type u_1} [comm_ring R] [is_domain R] [normalized_gcd_monoid R] {p : R[X]} (n : ) :
@[simp]
@[simp]
theorem polynomial.content_zero {R : Type u_1} [comm_ring R] [is_domain R] [normalized_gcd_monoid R] :
@[simp]
theorem polynomial.content_one {R : Type u_1} [comm_ring R] [is_domain R] [normalized_gcd_monoid R] :
@[simp]
theorem polynomial.content_X_pow {R : Type u_1} [comm_ring R] [is_domain R] [normalized_gcd_monoid R] {k : } :
@[simp]
theorem polynomial.content_C_mul {R : Type u_1} [comm_ring R] [is_domain R] [normalized_gcd_monoid R] (r : R) (p : R[X]) :
@[simp]
theorem polynomial.content_eq_zero_iff {R : Type u_1} [comm_ring R] [is_domain R] [normalized_gcd_monoid R] {p : R[X]} :
p.content = 0 p = 0
noncomputable def polynomial.prim_part {R : Type u_1} [comm_ring R] [is_domain R] [normalized_gcd_monoid R] (p : R[X]) :

The primitive part of a polynomial p is the primitive polynomial gained by dividing p by p.content. If p = 0, then p.prim_part = 1.

Equations
@[simp]
@[simp]
theorem polynomial.is_primitive.prim_part_eq {R : Type u_1} [comm_ring R] [is_domain R] [normalized_gcd_monoid R] {p : R[X]} (hp : p.is_primitive) :
theorem polynomial.prim_part_dvd {R : Type u_1} [comm_ring R] [is_domain R] [normalized_gcd_monoid R] (p : R[X]) :
theorem polynomial.gcd_content_eq_of_dvd_sub {R : Type u_1} [comm_ring R] [is_domain R] [normalized_gcd_monoid R] {a : R} {p q : R[X]} (h : polynomial.C a p - q) :
@[simp]
theorem polynomial.content_mul {R : Type u_1} [comm_ring R] [is_domain R] [normalized_gcd_monoid R] {p q : R[X]} :
(p * q).content = (p.content) * q.content
theorem polynomial.is_primitive.mul {R : Type u_1} [comm_ring R] [is_domain R] [normalized_gcd_monoid R] {p q : R[X]} (hp : p.is_primitive) (hq : q.is_primitive) :
@[simp]
theorem polynomial.prim_part_mul {R : Type u_1} [comm_ring R] [is_domain R] [normalized_gcd_monoid R] {p q : R[X]} (h0 : p * q 0) :
theorem polynomial.is_primitive.is_primitive_of_dvd {R : Type u_1} [comm_ring R] [is_domain R] [normalized_gcd_monoid R] {p q : R[X]} (hp : p.is_primitive) (hdvd : q p) :
theorem polynomial.is_primitive.dvd_prim_part_iff_dvd {R : Type u_1} [comm_ring R] [is_domain R] [normalized_gcd_monoid R] {p q : R[X]} (hp : p.is_primitive) (hq : q 0) :
theorem polynomial.exists_primitive_lcm_of_is_primitive {R : Type u_1} [comm_ring R] [is_domain R] [normalized_gcd_monoid R] {p q : R[X]} (hp : p.is_primitive) (hq : q.is_primitive) :
∃ (r : R[X]), r.is_primitive ∀ (s : R[X]), p s q s r s
@[protected, instance]
Equations
theorem polynomial.degree_gcd_le_left {R : Type u_1} [comm_ring R] [is_domain R] [normalized_gcd_monoid R] {p : R[X]} (hp : p 0) (q : R[X]) :
theorem polynomial.degree_gcd_le_right {R : Type u_1} [comm_ring R] [is_domain R] [normalized_gcd_monoid R] (p : R[X]) {q : R[X]} (hq : q 0) :