Intervals in Lattices #
In this file, we provide instances of lattice structures on intervals within lattices. Some of them depend on the order of the endpoints of the interval, and thus are not made global instances. These are probably not all of the lattice instances that could be placed on these intervals, but more can be added easily along the same lines when needed.
Main definitions #
In the following, *
can represent either c
, o
, or i
.
set.Ic*.order_bot
set.Ii*.semillatice_inf
set.I*c.order_top
set.I*c.semillatice_inf
set.I**.lattice
set.Iic.bounded_order
, within anorder_bot
set.Ici.bounded_order
, within anorder_top
@[protected, instance]
def
set.Ico.semilattice_inf
{α : Type u_1}
{a b : α}
[semilattice_inf α] :
semilattice_inf ↥(set.Ico a b)
Equations
- set.Ico.semilattice_inf = subtype.semilattice_inf set.Ico.semilattice_inf._proof_1
@[protected]
Ico a b
has a bottom element whenever a < b
.
Equations
@[protected, instance]
Equations
- set.Iio.semilattice_inf = subtype.semilattice_inf set.Iio.semilattice_inf._proof_1
@[protected, instance]
def
set.Ioc.semilattice_sup
{α : Type u_1}
{a b : α}
[semilattice_sup α] :
semilattice_sup ↥(set.Ioc a b)
Equations
- set.Ioc.semilattice_sup = subtype.semilattice_sup set.Ioc.semilattice_sup._proof_1
@[protected]
Ioc a b
has a top element whenever a < b
.
Equations
@[protected, instance]
Equations
- set.Iio.set.Ioi.semilattice_sup = subtype.semilattice_sup set.Iio.set.Ioi.semilattice_sup._proof_1
@[protected, instance]
Equations
- set.Iic.semilattice_inf = subtype.semilattice_inf set.Iic.semilattice_inf._proof_1
@[protected, instance]
Equations
- set.Iic.semilattice_sup = subtype.semilattice_sup set.Iic.semilattice_sup._proof_1
@[protected, instance]
Equations
- set.Iic.lattice = {sup := semilattice_sup.sup set.Iic.semilattice_sup, le := semilattice_inf.le set.Iic.semilattice_inf, lt := semilattice_inf.lt set.Iic.semilattice_inf, le_refl := _, le_trans := _, lt_iff_le_not_le := _, le_antisymm := _, le_sup_left := _, le_sup_right := _, sup_le := _, inf := semilattice_inf.inf set.Iic.semilattice_inf, inf_le_left := _, inf_le_right := _, le_inf := _}
@[protected, instance]
def
set.Iic.no_min_order
{α : Type u_1}
[partial_order α]
[no_min_order α]
{a : α} :
no_min_order ↥(set.Iic a)
@[protected, instance]
Equations
- set.Iic.bounded_order = {top := order_top.top set.Iic.order_top, le_top := _, bot := order_bot.bot set.Iic.order_bot, bot_le := _}
@[protected, instance]
Equations
- set.Ici.semilattice_inf = subtype.semilattice_inf set.Ici.semilattice_inf._proof_1
@[protected, instance]
Equations
- set.Ici.semilattice_sup = subtype.semilattice_sup set.Ici.semilattice_sup._proof_1
@[protected, instance]
Equations
- set.Ici.lattice = {sup := semilattice_sup.sup set.Ici.semilattice_sup, le := semilattice_inf.le set.Ici.semilattice_inf, lt := semilattice_inf.lt set.Ici.semilattice_inf, le_refl := _, le_trans := _, lt_iff_le_not_le := _, le_antisymm := _, le_sup_left := _, le_sup_right := _, sup_le := _, inf := semilattice_inf.inf set.Ici.semilattice_inf, inf_le_left := _, inf_le_right := _, le_inf := _}
@[protected, instance]
def
set.Ici.no_max_order
{α : Type u_1}
[partial_order α]
[no_max_order α]
{a : α} :
no_max_order ↥(set.Ici a)
@[protected, instance]
Equations
- set.Ici.bounded_order = {top := order_top.top set.Ici.order_top, le_top := _, bot := order_bot.bot set.Ici.order_bot, bot_le := _}
@[protected, instance]
def
set.Icc.semilattice_inf
{α : Type u_1}
[semilattice_inf α]
{a b : α} :
semilattice_inf ↥(set.Icc a b)
Equations
- set.Icc.semilattice_inf = subtype.semilattice_inf set.Icc.semilattice_inf._proof_1
@[protected, instance]
def
set.Icc.semilattice_sup
{α : Type u_1}
[semilattice_sup α]
{a b : α} :
semilattice_sup ↥(set.Icc a b)
Equations
- set.Icc.semilattice_sup = subtype.semilattice_sup set.Icc.semilattice_sup._proof_1
@[protected, instance]
Equations
- set.Icc.lattice = {sup := semilattice_sup.sup set.Icc.semilattice_sup, le := semilattice_inf.le set.Icc.semilattice_inf, lt := semilattice_inf.lt set.Icc.semilattice_inf, le_refl := _, le_trans := _, lt_iff_le_not_le := _, le_antisymm := _, le_sup_left := _, le_sup_right := _, sup_le := _, inf := semilattice_inf.inf set.Icc.semilattice_inf, inf_le_left := _, inf_le_right := _, le_inf := _}
@[protected]
Icc a b
has a bottom element whenever a ≤ b
.
Equations
@[protected]
Icc a b
has a top element whenever a ≤ b
.
Equations
@[protected]
def
set.Icc.bounded_order
{α : Type u_1}
[preorder α]
{a b : α}
(h : a ≤ b) :
bounded_order ↥(set.Icc a b)
Icc a b
is a bounded_order
whenever a ≤ b
.
Equations
- set.Icc.bounded_order h = {top := order_top.top (set.Icc.order_top h), le_top := _, bot := order_bot.bot (set.Icc.order_bot h), bot_le := _}