Closed sets #
We define a few types of closed sets in a topological space.
Main Definitions #
For a topological space α
,
closeds α
: The type of closed sets.clopens α
: The type of clopen sets.
Closed sets #
The type of closed subsets of a topological space.
@[protected, instance]
Equations
- topological_space.closeds.set_like = {coe := topological_space.closeds.carrier _inst_1, coe_injective' := _}
theorem
topological_space.closeds.closed
{α : Type u_1}
[topological_space α]
(s : topological_space.closeds α) :
@[protected, ext]
theorem
topological_space.closeds.ext
{α : Type u_1}
[topological_space α]
{s t : topological_space.closeds α}
(h : ↑s = ↑t) :
s = t
@[simp]
theorem
topological_space.closeds.coe_mk
{α : Type u_1}
[topological_space α]
(s : set α)
(h : is_closed s) :
@[protected, instance]
@[protected, instance]
@[protected, instance]
@[protected, instance]
@[protected, instance]
Equations
- topological_space.closeds.distrib_lattice = function.injective.distrib_lattice coe topological_space.closeds.distrib_lattice._proof_1 topological_space.closeds.distrib_lattice._proof_2 topological_space.closeds.distrib_lattice._proof_3
@[protected, instance]
Equations
- topological_space.closeds.bounded_order = bounded_order.lift coe topological_space.closeds.bounded_order._proof_1 topological_space.closeds.bounded_order._proof_2 topological_space.closeds.bounded_order._proof_3
@[protected, instance]
The type of closed sets is inhabited, with default element the empty set.
Equations
@[simp]
theorem
topological_space.closeds.coe_sup
{α : Type u_1}
[topological_space α]
(s t : topological_space.closeds α) :
@[simp]
theorem
topological_space.closeds.coe_inf
{α : Type u_1}
[topological_space α]
(s t : topological_space.closeds α) :
@[simp]
@[simp]
Clopen sets #
The type of clopen sets of a topological space.
@[protected, instance]
Equations
- topological_space.clopens.set_like = {coe := λ (s : topological_space.clopens α), s.carrier, coe_injective' := _}
theorem
topological_space.clopens.clopen
{α : Type u_1}
[topological_space α]
(s : topological_space.clopens α) :
@[simp]
theorem
topological_space.clopens.to_opens_coe
{α : Type u_1}
[topological_space α]
(s : topological_space.clopens α) :
def
topological_space.clopens.to_opens
{α : Type u_1}
[topological_space α]
(s : topological_space.clopens α) :
Reinterpret a compact open as an open.
@[protected, ext]
theorem
topological_space.clopens.ext
{α : Type u_1}
[topological_space α]
{s t : topological_space.clopens α}
(h : ↑s = ↑t) :
s = t
@[simp]
theorem
topological_space.clopens.coe_mk
{α : Type u_1}
[topological_space α]
(s : set α)
(h : is_clopen s) :
@[protected, instance]
@[protected, instance]
@[protected, instance]
@[protected, instance]
@[protected, instance]
@[protected, instance]
Equations
- topological_space.clopens.has_compl = {compl := λ (s : topological_space.clopens α), {carrier := (↑s)ᶜ, clopen' := _}}
@[protected, instance]
Equations
- topological_space.clopens.boolean_algebra = function.injective.boolean_algebra coe topological_space.clopens.boolean_algebra._proof_1 topological_space.clopens.boolean_algebra._proof_2 topological_space.clopens.boolean_algebra._proof_3 topological_space.clopens.boolean_algebra._proof_4 topological_space.clopens.boolean_algebra._proof_5 topological_space.clopens.boolean_algebra._proof_6 topological_space.clopens.boolean_algebra._proof_7
@[simp]
theorem
topological_space.clopens.coe_sup
{α : Type u_1}
[topological_space α]
(s t : topological_space.clopens α) :
@[simp]
theorem
topological_space.clopens.coe_inf
{α : Type u_1}
[topological_space α]
(s t : topological_space.clopens α) :
@[simp]
@[simp]
@[simp]
theorem
topological_space.clopens.coe_sdiff
{α : Type u_1}
[topological_space α]
(s t : topological_space.clopens α) :
@[simp]
theorem
topological_space.clopens.coe_compl
{α : Type u_1}
[topological_space α]
(s : topological_space.clopens α) :
@[protected, instance]