nat.pow
#
Results on the power operation on natural numbers.
pow
#
theorem
strict_mono.nat_pow
{n : ℕ}
(hn : 1 ≤ n)
{f : ℕ → ℕ}
(hf : strict_mono f) :
strict_mono (λ (m : ℕ), f m ^ n)
pow
and mod
/ dvd
#
shiftl
and shiftr
#
size
#
@[simp]
theorem
nat.size_shiftl'
{b : bool}
{m n : ℕ}
(h : nat.shiftl' b m n ≠ 0) :
(nat.shiftl' b m n).size = m.size + n