Coprime elements of a ring #
Main definitions #
is_coprime x y
: thatx
andy
are coprime, defined to be the existence ofa
andb
such thata * x + b * y = 1
. Note that elements with no common divisors are not necessarily coprime, e.g., the multivariate polynomialsx₁
andx₂
are not coprime.
See also ring_theory.coprime.lemmas
for further development of coprime elements.
@[simp]
The proposition that x
and y
are coprime, defined to be the existence of a
and b
such
that a * x + b * y = 1
. Note that elements with no common divisors are not necessarily coprime,
e.g., the multivariate polynomials x₁
and x₂
are not coprime.
theorem
is_coprime.symm
{R : Type u}
[comm_semiring R]
{x y : R}
(H : is_coprime x y) :
is_coprime y x
theorem
is_coprime.ne_zero
{R : Type u}
[comm_semiring R]
[nontrivial R]
{p : fin 2 → R}
(h : is_coprime (p 0) (p 1)) :
p ≠ 0
If a 2-vector p
satisfies is_coprime (p 0) (p 1)
, then p ≠ 0
.
theorem
is_coprime.dvd_of_dvd_mul_right
{R : Type u}
[comm_semiring R]
{x y z : R}
(H1 : is_coprime x z)
(H2 : x ∣ y * z) :
x ∣ y
theorem
is_coprime.dvd_of_dvd_mul_left
{R : Type u}
[comm_semiring R]
{x y z : R}
(H1 : is_coprime x y)
(H2 : x ∣ y * z) :
x ∣ z
theorem
is_coprime.mul_left
{R : Type u}
[comm_semiring R]
{x y z : R}
(H1 : is_coprime x z)
(H2 : is_coprime y z) :
is_coprime (x * y) z
theorem
is_coprime.mul_right
{R : Type u}
[comm_semiring R]
{x y z : R}
(H1 : is_coprime x y)
(H2 : is_coprime x z) :
is_coprime x (y * z)
theorem
is_coprime.mul_dvd
{R : Type u}
[comm_semiring R]
{x y z : R}
(H : is_coprime x y)
(H1 : x ∣ z)
(H2 : y ∣ z) :
theorem
is_coprime.of_mul_left_left
{R : Type u}
[comm_semiring R]
{x y z : R}
(H : is_coprime (x * y) z) :
is_coprime x z
theorem
is_coprime.of_mul_left_right
{R : Type u}
[comm_semiring R]
{x y z : R}
(H : is_coprime (x * y) z) :
is_coprime y z
theorem
is_coprime.of_mul_right_left
{R : Type u}
[comm_semiring R]
{x y z : R}
(H : is_coprime x (y * z)) :
is_coprime x y
theorem
is_coprime.of_mul_right_right
{R : Type u}
[comm_semiring R]
{x y z : R}
(H : is_coprime x (y * z)) :
is_coprime x z
theorem
is_coprime.mul_left_iff
{R : Type u}
[comm_semiring R]
{x y z : R} :
is_coprime (x * y) z ↔ is_coprime x z ∧ is_coprime y z
theorem
is_coprime.mul_right_iff
{R : Type u}
[comm_semiring R]
{x y z : R} :
is_coprime x (y * z) ↔ is_coprime x y ∧ is_coprime x z
theorem
is_coprime.of_coprime_of_dvd_left
{R : Type u}
[comm_semiring R]
{x y z : R}
(h : is_coprime y z)
(hdvd : x ∣ y) :
is_coprime x z
theorem
is_coprime.of_coprime_of_dvd_right
{R : Type u}
[comm_semiring R]
{x y z : R}
(h : is_coprime z y)
(hdvd : x ∣ y) :
is_coprime z x
theorem
is_coprime.is_unit_of_dvd
{R : Type u}
[comm_semiring R]
{x y : R}
(H : is_coprime x y)
(d : x ∣ y) :
is_unit x
theorem
is_coprime.is_unit_of_dvd'
{R : Type u}
[comm_semiring R]
{a b x : R}
(h : is_coprime a b)
(ha : x ∣ a)
(hb : x ∣ b) :
is_unit x
theorem
is_coprime.map
{R : Type u}
[comm_semiring R]
{x y : R}
(H : is_coprime x y)
{S : Type v}
[comm_semiring S]
(f : R →+* S) :
is_coprime (⇑f x) (⇑f y)
theorem
is_coprime.of_add_mul_left_left
{R : Type u}
[comm_semiring R]
{x y z : R}
(h : is_coprime (x + y * z) y) :
is_coprime x y
theorem
is_coprime.of_add_mul_right_left
{R : Type u}
[comm_semiring R]
{x y z : R}
(h : is_coprime (x + z * y) y) :
is_coprime x y
theorem
is_coprime.of_add_mul_left_right
{R : Type u}
[comm_semiring R]
{x y z : R}
(h : is_coprime x (y + x * z)) :
is_coprime x y
theorem
is_coprime.of_add_mul_right_right
{R : Type u}
[comm_semiring R]
{x y z : R}
(h : is_coprime x (y + z * x)) :
is_coprime x y
theorem
is_coprime.of_mul_add_left_left
{R : Type u}
[comm_semiring R]
{x y z : R}
(h : is_coprime (y * z + x) y) :
is_coprime x y
theorem
is_coprime.of_mul_add_right_left
{R : Type u}
[comm_semiring R]
{x y z : R}
(h : is_coprime (z * y + x) y) :
is_coprime x y
theorem
is_coprime.of_mul_add_left_right
{R : Type u}
[comm_semiring R]
{x y z : R}
(h : is_coprime x (x * z + y)) :
is_coprime x y
theorem
is_coprime.of_mul_add_right_right
{R : Type u}
[comm_semiring R]
{x y z : R}
(h : is_coprime x (z * x + y)) :
is_coprime x y
theorem
is_coprime_group_smul_left
{R : Type u_1}
{G : Type u_2}
[comm_semiring R]
[group G]
[mul_action G R]
[smul_comm_class G R R]
[is_scalar_tower G R R]
(x : G)
(y z : R) :
is_coprime (x • y) z ↔ is_coprime y z
theorem
is_coprime_group_smul_right
{R : Type u_1}
{G : Type u_2}
[comm_semiring R]
[group G]
[mul_action G R]
[smul_comm_class G R R]
[is_scalar_tower G R R]
(x : G)
(y z : R) :
is_coprime y (x • z) ↔ is_coprime y z
theorem
is_coprime_group_smul
{R : Type u_1}
{G : Type u_2}
[comm_semiring R]
[group G]
[mul_action G R]
[smul_comm_class G R R]
[is_scalar_tower G R R]
(x : G)
(y z : R) :
is_coprime (x • y) (x • z) ↔ is_coprime y z
theorem
is_coprime_mul_unit_left_left
{R : Type u_1}
[comm_semiring R]
{x : R}
(hu : is_unit x)
(y z : R) :
is_coprime (x * y) z ↔ is_coprime y z
theorem
is_coprime_mul_unit_left_right
{R : Type u_1}
[comm_semiring R]
{x : R}
(hu : is_unit x)
(y z : R) :
is_coprime y (x * z) ↔ is_coprime y z
theorem
is_coprime_mul_unit_left
{R : Type u_1}
[comm_semiring R]
{x : R}
(hu : is_unit x)
(y z : R) :
is_coprime (x * y) (x * z) ↔ is_coprime y z
theorem
is_coprime_mul_unit_right_left
{R : Type u_1}
[comm_semiring R]
{x : R}
(hu : is_unit x)
(y z : R) :
is_coprime (y * x) z ↔ is_coprime y z
theorem
is_coprime_mul_unit_right_right
{R : Type u_1}
[comm_semiring R]
{x : R}
(hu : is_unit x)
(y z : R) :
is_coprime y (z * x) ↔ is_coprime y z
theorem
is_coprime_mul_unit_right
{R : Type u_1}
[comm_semiring R]
{x : R}
(hu : is_unit x)
(y z : R) :
is_coprime (y * x) (z * x) ↔ is_coprime y z
theorem
is_coprime.add_mul_left_left
{R : Type u}
[comm_ring R]
{x y : R}
(h : is_coprime x y)
(z : R) :
is_coprime (x + y * z) y
theorem
is_coprime.add_mul_right_left
{R : Type u}
[comm_ring R]
{x y : R}
(h : is_coprime x y)
(z : R) :
is_coprime (x + z * y) y
theorem
is_coprime.add_mul_left_right
{R : Type u}
[comm_ring R]
{x y : R}
(h : is_coprime x y)
(z : R) :
is_coprime x (y + x * z)
theorem
is_coprime.add_mul_right_right
{R : Type u}
[comm_ring R]
{x y : R}
(h : is_coprime x y)
(z : R) :
is_coprime x (y + z * x)
theorem
is_coprime.mul_add_left_left
{R : Type u}
[comm_ring R]
{x y : R}
(h : is_coprime x y)
(z : R) :
is_coprime (y * z + x) y
theorem
is_coprime.mul_add_right_left
{R : Type u}
[comm_ring R]
{x y : R}
(h : is_coprime x y)
(z : R) :
is_coprime (z * y + x) y
theorem
is_coprime.mul_add_left_right
{R : Type u}
[comm_ring R]
{x y : R}
(h : is_coprime x y)
(z : R) :
is_coprime x (x * z + y)
theorem
is_coprime.mul_add_right_right
{R : Type u}
[comm_ring R]
{x y : R}
(h : is_coprime x y)
(z : R) :
is_coprime x (z * x + y)
theorem
is_coprime.add_mul_left_left_iff
{R : Type u}
[comm_ring R]
{x y z : R} :
is_coprime (x + y * z) y ↔ is_coprime x y
theorem
is_coprime.add_mul_right_left_iff
{R : Type u}
[comm_ring R]
{x y z : R} :
is_coprime (x + z * y) y ↔ is_coprime x y
theorem
is_coprime.add_mul_left_right_iff
{R : Type u}
[comm_ring R]
{x y z : R} :
is_coprime x (y + x * z) ↔ is_coprime x y
theorem
is_coprime.add_mul_right_right_iff
{R : Type u}
[comm_ring R]
{x y z : R} :
is_coprime x (y + z * x) ↔ is_coprime x y
theorem
is_coprime.mul_add_left_left_iff
{R : Type u}
[comm_ring R]
{x y z : R} :
is_coprime (y * z + x) y ↔ is_coprime x y
theorem
is_coprime.mul_add_right_left_iff
{R : Type u}
[comm_ring R]
{x y z : R} :
is_coprime (z * y + x) y ↔ is_coprime x y
theorem
is_coprime.mul_add_left_right_iff
{R : Type u}
[comm_ring R]
{x y z : R} :
is_coprime x (x * z + y) ↔ is_coprime x y
theorem
is_coprime.mul_add_right_right_iff
{R : Type u}
[comm_ring R]
{x y z : R} :
is_coprime x (z * x + y) ↔ is_coprime x y
theorem
is_coprime.neg_left
{R : Type u}
[comm_ring R]
{x y : R}
(h : is_coprime x y) :
is_coprime (-x) y
theorem
is_coprime.neg_left_iff
{R : Type u}
[comm_ring R]
(x y : R) :
is_coprime (-x) y ↔ is_coprime x y
theorem
is_coprime.neg_right
{R : Type u}
[comm_ring R]
{x y : R}
(h : is_coprime x y) :
is_coprime x (-y)
theorem
is_coprime.neg_right_iff
{R : Type u}
[comm_ring R]
(x y : R) :
is_coprime x (-y) ↔ is_coprime x y
theorem
is_coprime.neg_neg
{R : Type u}
[comm_ring R]
{x y : R}
(h : is_coprime x y) :
is_coprime (-x) (-y)
theorem
is_coprime.neg_neg_iff
{R : Type u}
[comm_ring R]
(x y : R) :
is_coprime (-x) (-y) ↔ is_coprime x y
theorem
is_coprime.sq_add_sq_ne_zero
{R : Type u_1}
[linear_ordered_comm_ring R]
{a b : R}
(h : is_coprime a b) :