mathlib documentation

topology.nhds_set

Neighborhoods of a set #

In this file we define the filter 𝓝ˢ s or nhds_set s consisting of all neighborhoods of a set s.

Main Properties #

There are a couple different notions equivalent to s ∈ 𝓝ˢ t:

Furthermore, we have the following results:

def nhds_set {α : Type u_1} [topological_space α] (s : set α) :

The filter of neighborhoods of a set in a topological space.

Equations
theorem mem_nhds_set_iff_forall {α : Type u_1} [topological_space α] {s t : set α} :
s 𝓝ˢ t ∀ (x : α), x ts 𝓝 x
theorem subset_interior_iff_mem_nhds_set {α : Type u_1} [topological_space α] {s t : set α} :
theorem mem_nhds_set_iff_exists {α : Type u_1} [topological_space α] {s t : set α} :
s 𝓝ˢ t ∃ (U : set α), is_open U t U U s
theorem has_basis_nhds_set {α : Type u_1} [topological_space α] (s : set α) :
(𝓝ˢ s).has_basis (λ (U : set α), is_open U s U) (λ (U : set α), U)
theorem is_open.mem_nhds_set {α : Type u_1} [topological_space α] {s t : set α} (hU : is_open s) :
s 𝓝ˢ t t s
@[simp]
theorem nhds_set_singleton {α : Type u_1} [topological_space α] {x : α} :
𝓝ˢ {x} = 𝓝 x
theorem mem_nhds_set_interior {α : Type u_1} [topological_space α] {s : set α} :
theorem mem_nhds_set_empty {α : Type u_1} [topological_space α] {s : set α} :
@[simp]
theorem nhds_set_empty {α : Type u_1} [topological_space α] :
@[simp]
theorem nhds_set_univ {α : Type u_1} [topological_space α] :
theorem monotone_nhds_set {α : Type u_1} [topological_space α] :
@[simp]
theorem nhds_set_union {α : Type u_1} [topological_space α] (s t : set α) :
theorem union_mem_nhds_set {α : Type u_1} [topological_space α] {s₁ s₂ t₁ t₂ : set α} (h₁ : s₁ 𝓝ˢ t₁) (h₂ : s₂ 𝓝ˢ t₂) :
s₁ s₂ 𝓝ˢ (t₁ t₂)