The covering relation #
This file defines the covering relation in an order. b
is said to cover a
if a < b
and there
is no element in between. We say that b
weakly covers a
if a ≤ b
and there is no element
between a
and b
. In a partial order this is equivalent to a ⋖ b ∨ a = b
, in a preorder this
is equivalent to a ⋖ b ∨ (a ≤ b ∧ b ≤ a)
Notation #
a ⋖ b
means thatb
coversa
.a ⩿ b
means thatb
weakly coversa
.
theorem
has_le.le.wcovby_of_le
{α : Type u_1}
[preorder α]
{a b : α}
(h1 : a ≤ b)
(h2 : b ≤ a) :
a ⩿ b
Alias of wcovby_of_le_of_le
.
@[simp]
theorem
apply_wcovby_apply_iff
{α : Type u_1}
{β : Type u_2}
[preorder α]
[preorder β]
{a b : α}
{E : Type u_3}
[order_iso_class E α β]
(e : E) :
@[simp]
theorem
to_dual_wcovby_to_dual_iff
{α : Type u_1}
[preorder α]
{a b : α} :
⇑order_dual.to_dual b ⩿ ⇑order_dual.to_dual a ↔ a ⩿ b
@[simp]
theorem
of_dual_wcovby_of_dual_iff
{α : Type u_1}
[preorder α]
{a b : order_dual α} :
⇑order_dual.of_dual a ⩿ ⇑order_dual.of_dual b ↔ b ⩿ a
theorem
wcovby.to_dual
{α : Type u_1}
[preorder α]
{a b : α} :
a ⩿ b → ⇑order_dual.to_dual b ⩿ ⇑order_dual.to_dual a
Alias of to_dual_wcovby_to_dual_iff
.
theorem
wcovby.of_dual
{α : Type u_1}
[preorder α]
{a b : order_dual α} :
b ⩿ a → ⇑order_dual.of_dual a ⩿ ⇑order_dual.of_dual b
Alias of of_dual_wcovby_of_dual_iff
.
theorem
wcovby.eq_or_eq
{α : Type u_1}
[partial_order α]
{a b c : α}
(h : a ⩿ b)
(h2 : a ≤ c)
(h3 : c ≤ b) :
Alias of not_covby_iff
.
Alias of exists_lt_lt_of_not_covby
.
theorem
densely_ordered_iff_forall_not_covby
{α : Type u_1}
[has_lt α] :
densely_ordered α ↔ ∀ (a b : α), ¬a ⋖ b
@[simp]
theorem
to_dual_covby_to_dual_iff
{α : Type u_1}
[has_lt α]
{a b : α} :
⇑order_dual.to_dual b ⋖ ⇑order_dual.to_dual a ↔ a ⋖ b
@[simp]
theorem
of_dual_covby_of_dual_iff
{α : Type u_1}
[has_lt α]
{a b : order_dual α} :
⇑order_dual.of_dual a ⋖ ⇑order_dual.of_dual b ↔ b ⋖ a
theorem
covby.to_dual
{α : Type u_1}
[has_lt α]
{a b : α} :
a ⋖ b → ⇑order_dual.to_dual b ⋖ ⇑order_dual.to_dual a
Alias of to_dual_covby_to_dual_iff
.
theorem
covby.of_dual
{α : Type u_1}
[has_lt α]
{a b : order_dual α} :
b ⋖ a → ⇑order_dual.of_dual a ⋖ ⇑order_dual.of_dual b
Alias of of_dual_covby_of_dual_iff
.
@[simp]
theorem
apply_covby_apply_iff
{α : Type u_1}
{β : Type u_2}
[preorder α]
[preorder β]
{a b : α}
{E : Type u_3}
[order_iso_class E α β]
(e : E) :
theorem
wcovby.covby_of_ne
{α : Type u_1}
[partial_order α]
{a b : α}
(h : a ⩿ b)
(h2 : a ≠ b) :
a ⋖ b