Relations holding pairwise #
This file defines pairwise relations and pairwise disjoint indexed sets.
Main declarations #
pairwise
:pairwise r
states thatr i j
for alli ≠ j
.set.pairwise
:s.pairwise r
states thatr i j
for alli ≠ j
withi, j ∈ s
.set.pairwise_disjoint
:s.pairwise_disjoint f
states that images underf
of distinct elements ofs
are either equal ordisjoint
.
Notes #
The spelling s.pairwise_disjoint id
is preferred over s.pairwise disjoint
to permit dot notation
on set.pairwise_disjoint
, even though the latter unfolds to something nicer.
Alias of function.injective_iff_pairwise_ne
.
For a nonempty set s
, a function f
takes pairwise equal values on s
if and only if
for some z
in the codomain, f
takes value z
on all x ∈ s
. See also
set.pairwise_eq_iff_exists_eq
for a version that assumes [nonempty ι]
instead of
set.nonempty s
.
A function f : α → ι
with nonempty codomain takes pairwise equal values on a set s
if and
only if for some z
in the codomain, f
takes value z
on all x ∈ s
. See also
set.nonempty.pairwise_eq_iff_exists_eq
for a version that assumes set.nonempty s
instead of
[nonempty ι]
.
Alias of pairwise_subtype_iff_pairwise_set
.
Alias of pairwise_subtype_iff_pairwise_set
.
A set is pairwise_disjoint
under f
, if the images of any distinct two elements under f
are disjoint.
s.pairwise disjoint
is (definitionally) the same as s.pairwise_disjoint id
. We prefer the latter
in order to allow dot notation on set.pairwise_disjoint
, even though the former unfolds more
nicely.
Equations
- s.pairwise_disjoint f = s.pairwise (disjoint on f)
Bind operation for set.pairwise_disjoint
. If you want to only consider finsets of indices, you
can use set.pairwise_disjoint.bUnion_finset
.
Pairwise disjoint set of sets #
Equivalence between a disjoint bounded union and a dependent sum.
Equations
- set.bUnion_eq_sigma_of_disjoint h = (equiv.set_congr set.bUnion_eq_sigma_of_disjoint._proof_1).trans (set.Union_eq_sigma_of_disjoint _)