mathlib documentation

algebra.big_operators.basic

Big operators #

In this file we define products and sums indexed by finite sets (specifically, finset).

Notation #

We introduce the following notation, localized in big_operators. To enable the notation, use open_locale big_operators.

Let s be a finset α, and f : α → β a function.

Implementation Notes #

The first arguments in all definitions and lemmas is the codomain of the function of the big operator. This is necessary for the heuristic in @[to_additive]. See the documentation of to_additive.attr for more information.

@[protected]
def finset.sum {β : Type u} {α : Type v} [add_comm_monoid β] (s : finset α) (f : α → β) :
β

∑ x in s, f x is the sum of f x as x ranges over the elements of the finite set s.

Equations
@[protected]
def finset.prod {β : Type u} {α : Type v} [comm_monoid β] (s : finset α) (f : α → β) :
β

∏ x in s, f x is the product of f x as x ranges over the elements of the finite set s.

Equations
@[simp]
theorem finset.prod_mk {β : Type u} {α : Type v} [comm_monoid β] (s : multiset α) (hs : s.nodup) (f : α → β) :
{val := s, nodup := hs}.prod f = (multiset.map f s).prod
@[simp]
theorem finset.sum_mk {β : Type u} {α : Type v} [add_comm_monoid β] (s : multiset α) (hs : s.nodup) (f : α → β) :
{val := s, nodup := hs}.sum f = (multiset.map f s).sum
theorem finset.prod_eq_multiset_prod {β : Type u} {α : Type v} [comm_monoid β] (s : finset α) (f : α → β) :
∏ (x : α) in s, f x = (multiset.map f s.val).prod
theorem finset.sum_eq_multiset_sum {β : Type u} {α : Type v} [add_comm_monoid β] (s : finset α) (f : α → β) :
∑ (x : α) in s, f x = (multiset.map f s.val).sum
theorem finset.prod_eq_fold {β : Type u} {α : Type v} [comm_monoid β] (s : finset α) (f : α → β) :
∏ (x : α) in s, f x = finset.fold has_mul.mul 1 f s
theorem finset.sum_eq_fold {β : Type u} {α : Type v} [add_comm_monoid β] (s : finset α) (f : α → β) :
∑ (x : α) in s, f x = finset.fold has_add.add 0 f s
@[simp]
theorem finset.sum_multiset_singleton {α : Type v} (s : finset α) :
∑ (x : α) in s, {x} = s.val
theorem map_sum {β : Type u} {α : Type v} {γ : Type w} [add_comm_monoid β] [add_comm_monoid γ] {G : Type u_1} [add_monoid_hom_class G β γ] (g : G) (f : α → β) (s : finset α) :
g (∑ (x : α) in s, f x) = ∑ (x : α) in s, g (f x)
theorem map_prod {β : Type u} {α : Type v} {γ : Type w} [comm_monoid β] [comm_monoid γ] {G : Type u_1} [monoid_hom_class G β γ] (g : G) (f : α → β) (s : finset α) :
g (∏ (x : α) in s, f x) = ∏ (x : α) in s, g (f x)
@[protected]
theorem add_monoid_hom.map_sum {β : Type u} {α : Type v} {γ : Type w} [add_comm_monoid β] [add_comm_monoid γ] (g : β →+ γ) (f : α → β) (s : finset α) :
g (∑ (x : α) in s, f x) = ∑ (x : α) in s, g (f x)

Deprecated: use _root_.map_sum instead.

@[protected]
theorem monoid_hom.map_prod {β : Type u} {α : Type v} {γ : Type w} [comm_monoid β] [comm_monoid γ] (g : β →* γ) (f : α → β) (s : finset α) :
g (∏ (x : α) in s, f x) = ∏ (x : α) in s, g (f x)

Deprecated: use _root_.map_prod instead.

@[protected]
theorem add_equiv.map_sum {β : Type u} {α : Type v} {γ : Type w} [add_comm_monoid β] [add_comm_monoid γ] (g : β ≃+ γ) (f : α → β) (s : finset α) :
g (∑ (x : α) in s, f x) = ∑ (x : α) in s, g (f x)

Deprecated: use _root_.map_sum instead.

@[protected]
theorem mul_equiv.map_prod {β : Type u} {α : Type v} {γ : Type w} [comm_monoid β] [comm_monoid γ] (g : β ≃* γ) (f : α → β) (s : finset α) :
g (∏ (x : α) in s, f x) = ∏ (x : α) in s, g (f x)

Deprecated: use _root_.map_prod instead.

@[protected]
theorem ring_hom.map_list_prod {β : Type u} {γ : Type w} [semiring β] [semiring γ] (f : β →+* γ) (l : list β) :

Deprecated: use _root_.map_list_prod instead.

@[protected]
theorem ring_hom.map_list_sum {β : Type u} {γ : Type w} [non_assoc_semiring β] [non_assoc_semiring γ] (f : β →+* γ) (l : list β) :

Deprecated: use _root_.map_list_sum instead.

@[protected]
theorem ring_hom.unop_map_list_prod {β : Type u} {γ : Type w} [semiring β] [semiring γ] (f : β →+* γᵐᵒᵖ) (l : list β) :

A morphism into the opposite ring acts on the product by acting on the reversed elements.

Deprecated: use _root_.unop_map_list_prod instead.

@[protected]
theorem ring_hom.map_multiset_prod {β : Type u} {γ : Type w} [comm_semiring β] [comm_semiring γ] (f : β →+* γ) (s : multiset β) :

Deprecated: use _root_.map_multiset_prod instead.

@[protected]
theorem ring_hom.map_multiset_sum {β : Type u} {γ : Type w} [non_assoc_semiring β] [non_assoc_semiring γ] (f : β →+* γ) (s : multiset β) :

Deprecated: use _root_.map_multiset_sum instead.

@[protected]
theorem ring_hom.map_prod {β : Type u} {α : Type v} {γ : Type w} [comm_semiring β] [comm_semiring γ] (g : β →+* γ) (f : α → β) (s : finset α) :
g (∏ (x : α) in s, f x) = ∏ (x : α) in s, g (f x)

Deprecated: use _root_.map_prod instead.

@[protected]
theorem ring_hom.map_sum {β : Type u} {α : Type v} {γ : Type w} [non_assoc_semiring β] [non_assoc_semiring γ] (g : β →+* γ) (f : α → β) (s : finset α) :
g (∑ (x : α) in s, f x) = ∑ (x : α) in s, g (f x)

Deprecated: use _root_.map_sum instead.

theorem add_monoid_hom.coe_finset_sum {β : Type u} {α : Type v} {γ : Type w} [add_zero_class β] [add_comm_monoid γ] (f : α → β →+ γ) (s : finset α) :
∑ (x : α) in s, f x = ∑ (x : α) in s, (f x)
theorem monoid_hom.coe_finset_prod {β : Type u} {α : Type v} {γ : Type w} [mul_one_class β] [comm_monoid γ] (f : α → β →* γ) (s : finset α) :
∏ (x : α) in s, f x = ∏ (x : α) in s, (f x)
@[simp]
theorem add_monoid_hom.finset_sum_apply {β : Type u} {α : Type v} {γ : Type w} [add_zero_class β] [add_comm_monoid γ] (f : α → β →+ γ) (s : finset α) (b : β) :
(∑ (x : α) in s, f x) b = ∑ (x : α) in s, (f x) b
@[simp]
theorem monoid_hom.finset_prod_apply {β : Type u} {α : Type v} {γ : Type w} [mul_one_class β] [comm_monoid γ] (f : α → β →* γ) (s : finset α) (b : β) :
(∏ (x : α) in s, f x) b = ∏ (x : α) in s, (f x) b
@[simp]
theorem finset.sum_empty {β : Type u} {α : Type v} [add_comm_monoid β] {f : α → β} :
∑ (x : α) in , f x = 0
@[simp]
theorem finset.prod_empty {β : Type u} {α : Type v} [comm_monoid β] {f : α → β} :
∏ (x : α) in , f x = 1
@[simp]
theorem finset.sum_cons {β : Type u} {α : Type v} {s : finset α} {a : α} {f : α → β} [add_comm_monoid β] (h : a s) :
∑ (x : α) in finset.cons a s h, f x = f a + ∑ (x : α) in s, f x
@[simp]
theorem finset.prod_cons {β : Type u} {α : Type v} {s : finset α} {a : α} {f : α → β} [comm_monoid β] (h : a s) :
∏ (x : α) in finset.cons a s h, f x = (f a) * ∏ (x : α) in s, f x
@[simp]
theorem finset.prod_insert {β : Type u} {α : Type v} {s : finset α} {a : α} {f : α → β} [comm_monoid β] [decidable_eq α] :
a s∏ (x : α) in insert a s, f x = (f a) * ∏ (x : α) in s, f x
@[simp]
theorem finset.sum_insert {β : Type u} {α : Type v} {s : finset α} {a : α} {f : α → β} [add_comm_monoid β] [decidable_eq α] :
a s∑ (x : α) in insert a s, f x = f a + ∑ (x : α) in s, f x
@[simp]
theorem finset.sum_insert_of_eq_zero_if_not_mem {β : Type u} {α : Type v} {s : finset α} {a : α} {f : α → β} [add_comm_monoid β] [decidable_eq α] (h : a sf a = 0) :
∑ (x : α) in insert a s, f x = ∑ (x : α) in s, f x

The sum of f over insert a s is the same as the sum over s, as long as a is in s or f a = 0.

@[simp]
theorem finset.prod_insert_of_eq_one_if_not_mem {β : Type u} {α : Type v} {s : finset α} {a : α} {f : α → β} [comm_monoid β] [decidable_eq α] (h : a sf a = 1) :
∏ (x : α) in insert a s, f x = ∏ (x : α) in s, f x

The product of f over insert a s is the same as the product over s, as long as a is in s or f a = 1.

@[simp]
theorem finset.sum_insert_zero {β : Type u} {α : Type v} {s : finset α} {a : α} {f : α → β} [add_comm_monoid β] [decidable_eq α] (h : f a = 0) :
∑ (x : α) in insert a s, f x = ∑ (x : α) in s, f x

The sum of f over insert a s is the same as the sum over s, as long as f a = 0.

@[simp]
theorem finset.prod_insert_one {β : Type u} {α : Type v} {s : finset α} {a : α} {f : α → β} [comm_monoid β] [decidable_eq α] (h : f a = 1) :
∏ (x : α) in insert a s, f x = ∏ (x : α) in s, f x

The product of f over insert a s is the same as the product over s, as long as f a = 1.

@[simp]
theorem finset.prod_singleton {β : Type u} {α : Type v} {a : α} {f : α → β} [comm_monoid β] :
∏ (x : α) in {a}, f x = f a
@[simp]
theorem finset.sum_singleton {β : Type u} {α : Type v} {a : α} {f : α → β} [add_comm_monoid β] :
∑ (x : α) in {a}, f x = f a
theorem finset.prod_pair {β : Type u} {α : Type v} {f : α → β} [comm_monoid β] [decidable_eq α] {a b : α} (h : a b) :
∏ (x : α) in {a, b}, f x = (f a) * f b
theorem finset.sum_pair {β : Type u} {α : Type v} {f : α → β} [add_comm_monoid β] [decidable_eq α] {a b : α} (h : a b) :
∑ (x : α) in {a, b}, f x = f a + f b
@[simp]
theorem finset.prod_const_one {β : Type u} {α : Type v} {s : finset α} [comm_monoid β] :
∏ (x : α) in s, 1 = 1
@[simp]
theorem finset.sum_const_zero {β : Type u} {α : Type v} {s : finset α} [add_comm_monoid β] :
∑ (x : α) in s, 0 = 0
@[simp]
theorem finset.sum_image {β : Type u} {α : Type v} {γ : Type w} {f : α → β} [add_comm_monoid β] [decidable_eq α] {s : finset γ} {g : γ → α} :
(∀ (x : γ), x s∀ (y : γ), y sg x = g yx = y)∑ (x : α) in finset.image g s, f x = ∑ (x : γ) in s, f (g x)
@[simp]
theorem finset.prod_image {β : Type u} {α : Type v} {γ : Type w} {f : α → β} [comm_monoid β] [decidable_eq α] {s : finset γ} {g : γ → α} :
(∀ (x : γ), x s∀ (y : γ), y sg x = g yx = y)∏ (x : α) in finset.image g s, f x = ∏ (x : γ) in s, f (g x)
@[simp]
theorem finset.sum_map {β : Type u} {α : Type v} {γ : Type w} [add_comm_monoid β] (s : finset α) (e : α γ) (f : γ → β) :
∑ (x : γ) in finset.map e s, f x = ∑ (x : α) in s, f (e x)
@[simp]
theorem finset.prod_map {β : Type u} {α : Type v} {γ : Type w} [comm_monoid β] (s : finset α) (e : α γ) (f : γ → β) :
∏ (x : γ) in finset.map e s, f x = ∏ (x : α) in s, f (e x)
theorem finset.prod_congr {β : Type u} {α : Type v} {s₁ s₂ : finset α} {f g : α → β} [comm_monoid β] (h : s₁ = s₂) :
(∀ (x : α), x s₂f x = g x)s₁.prod f = s₂.prod g
theorem finset.sum_congr {β : Type u} {α : Type v} {s₁ s₂ : finset α} {f g : α → β} [add_comm_monoid β] (h : s₁ = s₂) :
(∀ (x : α), x s₂f x = g x)s₁.sum f = s₂.sum g
theorem finset.sum_union_inter {β : Type u} {α : Type v} {s₁ s₂ : finset α} {f : α → β} [add_comm_monoid β] [decidable_eq α] :
∑ (x : α) in s₁ s₂, f x + ∑ (x : α) in s₁ s₂, f x = ∑ (x : α) in s₁, f x + ∑ (x : α) in s₂, f x
theorem finset.prod_union_inter {β : Type u} {α : Type v} {s₁ s₂ : finset α} {f : α → β} [comm_monoid β] [decidable_eq α] :
(∏ (x : α) in s₁ s₂, f x) * ∏ (x : α) in s₁ s₂, f x = (∏ (x : α) in s₁, f x) * ∏ (x : α) in s₂, f x
theorem finset.prod_union {β : Type u} {α : Type v} {s₁ s₂ : finset α} {f : α → β} [comm_monoid β] [decidable_eq α] (h : disjoint s₁ s₂) :
∏ (x : α) in s₁ s₂, f x = (∏ (x : α) in s₁, f x) * ∏ (x : α) in s₂, f x
theorem finset.sum_union {β : Type u} {α : Type v} {s₁ s₂ : finset α} {f : α → β} [add_comm_monoid β] [decidable_eq α] (h : disjoint s₁ s₂) :
∑ (x : α) in s₁ s₂, f x = ∑ (x : α) in s₁, f x + ∑ (x : α) in s₂, f x
theorem finset.sum_filter_add_sum_filter_not {β : Type u} {α : Type v} [add_comm_monoid β] (s : finset α) (p : α → Prop) [decidable_pred p] [decidable_pred (λ (x : α), ¬p x)] (f : α → β) :
∑ (x : α) in finset.filter p s, f x + ∑ (x : α) in finset.filter (λ (x : α), ¬p x) s, f x = ∑ (x : α) in s, f x
theorem finset.prod_filter_mul_prod_filter_not {β : Type u} {α : Type v} [comm_monoid β] (s : finset α) (p : α → Prop) [decidable_pred p] [decidable_pred (λ (x : α), ¬p x)] (f : α → β) :
(∏ (x : α) in finset.filter p s, f x) * ∏ (x : α) in finset.filter (λ (x : α), ¬p x) s, f x = ∏ (x : α) in s, f x
@[simp]
theorem finset.prod_to_list {β : Type u} {α : Type v} [comm_monoid β] (s : finset α) (f : α → β) :
@[simp]
theorem finset.sum_to_list {β : Type u} {α : Type v} [add_comm_monoid β] (s : finset α) (f : α → β) :
theorem equiv.perm.sum_comp {β : Type u} {α : Type v} [add_comm_monoid β] (σ : equiv.perm α) (s : finset α) (f : α → β) (hs : {a : α | σ a a} s) :
∑ (x : α) in s, f (σ x) = ∑ (x : α) in s, f x
theorem equiv.perm.prod_comp {β : Type u} {α : Type v} [comm_monoid β] (σ : equiv.perm α) (s : finset α) (f : α → β) (hs : {a : α | σ a a} s) :
∏ (x : α) in s, f (σ x) = ∏ (x : α) in s, f x
theorem equiv.perm.sum_comp' {β : Type u} {α : Type v} [add_comm_monoid β] (σ : equiv.perm α) (s : finset α) (f : α → α → β) (hs : {a : α | σ a a} s) :
∑ (x : α) in s, f (σ x) x = ∑ (x : α) in s, f x ((equiv.symm σ) x)
theorem equiv.perm.prod_comp' {β : Type u} {α : Type v} [comm_monoid β] (σ : equiv.perm α) (s : finset α) (f : α → α → β) (hs : {a : α | σ a a} s) :
∏ (x : α) in s, f (σ x) x = ∏ (x : α) in s, f x ((equiv.symm σ) x)
theorem is_compl.sum_add_sum {β : Type u} {α : Type v} [fintype α] [decidable_eq α] [add_comm_monoid β] {s t : finset α} (h : is_compl s t) (f : α → β) :
∑ (i : α) in s, f i + ∑ (i : α) in t, f i = ∑ (i : α), f i
theorem is_compl.prod_mul_prod {β : Type u} {α : Type v} [fintype α] [decidable_eq α] [comm_monoid β] {s t : finset α} (h : is_compl s t) (f : α → β) :
(∏ (i : α) in s, f i) * ∏ (i : α) in t, f i = ∏ (i : α), f i
theorem finset.sum_add_sum_compl {β : Type u} {α : Type v} [add_comm_monoid β] [fintype α] [decidable_eq α] (s : finset α) (f : α → β) :
∑ (i : α) in s, f i + ∑ (i : α) in s, f i = ∑ (i : α), f i

Adding the sums of a function over s and over sᶜ gives the whole sum. For a version expressed with subtypes, see fintype.sum_subtype_add_sum_subtype.

theorem finset.prod_mul_prod_compl {β : Type u} {α : Type v} [comm_monoid β] [fintype α] [decidable_eq α] (s : finset α) (f : α → β) :
(∏ (i : α) in s, f i) * ∏ (i : α) in s, f i = ∏ (i : α), f i

Multiplying the products of a function over s and over sᶜ gives the whole product. For a version expressed with subtypes, see fintype.prod_subtype_mul_prod_subtype.

theorem finset.prod_compl_mul_prod {β : Type u} {α : Type v} [comm_monoid β] [fintype α] [decidable_eq α] (s : finset α) (f : α → β) :
(∏ (i : α) in s, f i) * ∏ (i : α) in s, f i = ∏ (i : α), f i
theorem finset.sum_compl_add_sum {β : Type u} {α : Type v} [add_comm_monoid β] [fintype α] [decidable_eq α] (s : finset α) (f : α → β) :
∑ (i : α) in s, f i + ∑ (i : α) in s, f i = ∑ (i : α), f i
theorem finset.prod_sdiff {β : Type u} {α : Type v} {s₁ s₂ : finset α} {f : α → β} [comm_monoid β] [decidable_eq α] (h : s₁ s₂) :
(∏ (x : α) in s₂ \ s₁, f x) * ∏ (x : α) in s₁, f x = ∏ (x : α) in s₂, f x
theorem finset.sum_sdiff {β : Type u} {α : Type v} {s₁ s₂ : finset α} {f : α → β} [add_comm_monoid β] [decidable_eq α] (h : s₁ s₂) :
∑ (x : α) in s₂ \ s₁, f x + ∑ (x : α) in s₁, f x = ∑ (x : α) in s₂, f x
@[simp]
theorem finset.sum_sum_elim {β : Type u} {α : Type v} {γ : Type w} [add_comm_monoid β] [decidable_eq γ)] (s : finset α) (t : finset γ) (f : α → β) (g : γ → β) :
∑ (x : α γ) in finset.map function.embedding.inl s finset.map function.embedding.inr t, sum.elim f g x = ∑ (x : α) in s, f x + ∑ (x : γ) in t, g x
@[simp]
theorem finset.prod_sum_elim {β : Type u} {α : Type v} {γ : Type w} [comm_monoid β] [decidable_eq γ)] (s : finset α) (t : finset γ) (f : α → β) (g : γ → β) :
∏ (x : α γ) in finset.map function.embedding.inl s finset.map function.embedding.inr t, sum.elim f g x = (∏ (x : α) in s, f x) * ∏ (x : γ) in t, g x
theorem finset.prod_bUnion {β : Type u} {α : Type v} {γ : Type w} {f : α → β} [comm_monoid β] [decidable_eq α] {s : finset γ} {t : γ → finset α} (hs : s.pairwise_disjoint t) :
∏ (x : α) in s.bUnion t, f x = ∏ (x : γ) in s, ∏ (i : α) in t x, f i
theorem finset.sum_bUnion {β : Type u} {α : Type v} {γ : Type w} {f : α → β} [add_comm_monoid β] [decidable_eq α] {s : finset γ} {t : γ → finset α} (hs : s.pairwise_disjoint t) :
∑ (x : α) in s.bUnion t, f x = ∑ (x : γ) in s, ∑ (i : α) in t x, f i
theorem finset.prod_sigma {β : Type u} {α : Type v} [comm_monoid β] {σ : α → Type u_1} (s : finset α) (t : Π (a : α), finset (σ a)) (f : sigma σ → β) :
∏ (x : Σ (i : α), σ i) in s.sigma t, f x = ∏ (a : α) in s, ∏ (s : σ a) in t a, f a, s⟩

Product over a sigma type equals the product of fiberwise products. For rewriting in the reverse direction, use finset.prod_sigma'.

theorem finset.sum_sigma {β : Type u} {α : Type v} [add_comm_monoid β] {σ : α → Type u_1} (s : finset α) (t : Π (a : α), finset (σ a)) (f : sigma σ → β) :
∑ (x : Σ (i : α), σ i) in s.sigma t, f x = ∑ (a : α) in s, ∑ (s : σ a) in t a, f a, s⟩

Sum over a sigma type equals the sum of fiberwise sums. For rewriting in the reverse direction, use finset.sum_sigma'

theorem finset.sum_sigma' {β : Type u} {α : Type v} [add_comm_monoid β] {σ : α → Type u_1} (s : finset α) (t : Π (a : α), finset (σ a)) (f : Π (a : α), σ a → β) :
∑ (a : α) in s, ∑ (s : σ a) in t a, f a s = ∑ (x : Σ (i : α), σ i) in s.sigma t, f x.fst x.snd
theorem finset.prod_sigma' {β : Type u} {α : Type v} [comm_monoid β] {σ : α → Type u_1} (s : finset α) (t : Π (a : α), finset (σ a)) (f : Π (a : α), σ a → β) :
∏ (a : α) in s, ∏ (s : σ a) in t a, f a s = ∏ (x : Σ (i : α), σ i) in s.sigma t, f x.fst x.snd
theorem finset.sum_bij {β : Type u} {α : Type v} {γ : Type w} [add_comm_monoid β] {s : finset α} {t : finset γ} {f : α → β} {g : γ → β} (i : Π (a : α), a s → γ) (hi : ∀ (a : α) (ha : a s), i a ha t) (h : ∀ (a : α) (ha : a s), f a = g (i a ha)) (i_inj : ∀ (a₁ a₂ : α) (ha₁ : a₁ s) (ha₂ : a₂ s), i a₁ ha₁ = i a₂ ha₂a₁ = a₂) (i_surj : ∀ (b : γ), b t(∃ (a : α) (ha : a s), b = i a ha)) :
∑ (x : α) in s, f x = ∑ (x : γ) in t, g x

Reorder a sum.

The difference with sum_bij' is that the bijection is specified as a surjective injection, rather than by an inverse function.

theorem finset.prod_bij {β : Type u} {α : Type v} {γ : Type w} [comm_monoid β] {s : finset α} {t : finset γ} {f : α → β} {g : γ → β} (i : Π (a : α), a s → γ) (hi : ∀ (a : α) (ha : a s), i a ha t) (h : ∀ (a : α) (ha : a s), f a = g (i a ha)) (i_inj : ∀ (a₁ a₂ : α) (ha₁ : a₁ s) (ha₂ : a₂ s), i a₁ ha₁ = i a₂ ha₂a₁ = a₂) (i_surj : ∀ (b : γ), b t(∃ (a : α) (ha : a s), b = i a ha)) :
∏ (x : α) in s, f x = ∏ (x : γ) in t, g x

Reorder a product.

The difference with prod_bij' is that the bijection is specified as a surjective injection, rather than by an inverse function.

theorem finset.sum_bij' {β : Type u} {α : Type v} {γ : Type w} [add_comm_monoid β] {s : finset α} {t : finset γ} {f : α → β} {g : γ → β} (i : Π (a : α), a s → γ) (hi : ∀ (a : α) (ha : a s), i a ha t) (h : ∀ (a : α) (ha : a s), f a = g (i a ha)) (j : Π (a : γ), a t → α) (hj : ∀ (a : γ) (ha : a t), j a ha s) (left_inv : ∀ (a : α) (ha : a s), j (i a ha) _ = a) (right_inv : ∀ (a : γ) (ha : a t), i (j a ha) _ = a) :
∑ (x : α) in s, f x = ∑ (x : γ) in t, g x

Reorder a sum.

The difference with sum_bij is that the bijection is specified with an inverse, rather than as a surjective injection.

theorem finset.prod_bij' {β : Type u} {α : Type v} {γ : Type w} [comm_monoid β] {s : finset α} {t : finset γ} {f : α → β} {g : γ → β} (i : Π (a : α), a s → γ) (hi : ∀ (a : α) (ha : a s), i a ha t) (h : ∀ (a : α) (ha : a s), f a = g (i a ha)) (j : Π (a : γ), a t → α) (hj : ∀ (a : γ) (ha : a t), j a ha s) (left_inv : ∀ (a : α) (ha : a s), j (i a ha) _ = a) (right_inv : ∀ (a : γ) (ha : a t), i (j a ha) _ = a) :
∏ (x : α) in s, f x = ∏ (x : γ) in t, g x

Reorder a product.

The difference with prod_bij is that the bijection is specified with an inverse, rather than as a surjective injection.

theorem finset.sum_finset_product {β : Type u} {α : Type v} {γ : Type w} [add_comm_monoid β] (r : finset × α)) (s : finset γ) (t : γ → finset α) (h : ∀ (p : γ × α), p r p.fst s p.snd t p.fst) {f : γ × α → β} :
∑ (p : γ × α) in r, f p = ∑ (c : γ) in s, ∑ (a : α) in t c, f (c, a)
theorem finset.prod_finset_product {β : Type u} {α : Type v} {γ : Type w} [comm_monoid β] (r : finset × α)) (s : finset γ) (t : γ → finset α) (h : ∀ (p : γ × α), p r p.fst s p.snd t p.fst) {f : γ × α → β} :
∏ (p : γ × α) in r, f p = ∏ (c : γ) in s, ∏ (a : α) in t c, f (c, a)
theorem finset.sum_finset_product' {β : Type u} {α : Type v} {γ : Type w} [add_comm_monoid β] (r : finset × α)) (s : finset γ) (t : γ → finset α) (h : ∀ (p : γ × α), p r p.fst s p.snd t p.fst) {f : γ → α → β} :
∑ (p : γ × α) in r, f p.fst p.snd = ∑ (c : γ) in s, ∑ (a : α) in t c, f c a
theorem finset.prod_finset_product' {β : Type u} {α : Type v} {γ : Type w} [comm_monoid β] (r : finset × α)) (s : finset γ) (t : γ → finset α) (h : ∀ (p : γ × α), p r p.fst s p.snd t p.fst) {f : γ → α → β} :
∏ (p : γ × α) in r, f p.fst p.snd = ∏ (c : γ) in s, ∏ (a : α) in t c, f c a
theorem finset.prod_finset_product_right {β : Type u} {α : Type v} {γ : Type w} [comm_monoid β] (r : finset × γ)) (s : finset γ) (t : γ → finset α) (h : ∀ (p : α × γ), p r p.snd s p.fst t p.snd) {f : α × γ → β} :
∏ (p : α × γ) in r, f p = ∏ (c : γ) in s, ∏ (a : α) in t c, f (a, c)
theorem finset.sum_finset_product_right {β : Type u} {α : Type v} {γ : Type w} [add_comm_monoid β] (r : finset × γ)) (s : finset γ) (t : γ → finset α) (h : ∀ (p : α × γ), p r p.snd s p.fst t p.snd) {f : α × γ → β} :
∑ (p : α × γ) in r, f p = ∑ (c : γ) in s, ∑ (a : α) in t c, f (a, c)
theorem finset.prod_finset_product_right' {β : Type u} {α : Type v} {γ : Type w} [comm_monoid β] (r : finset × γ)) (s : finset γ) (t : γ → finset α) (h : ∀ (p : α × γ), p r p.snd s p.fst t p.snd) {f : α → γ → β} :
∏ (p : α × γ) in r, f p.fst p.snd = ∏ (c : γ) in s, ∏ (a : α) in t c, f a c
theorem finset.sum_finset_product_right' {β : Type u} {α : Type v} {γ : Type w} [add_comm_monoid β] (r : finset × γ)) (s : finset γ) (t : γ → finset α) (h : ∀ (p : α × γ), p r p.snd s p.fst t p.snd) {f : α → γ → β} :
∑ (p : α × γ) in r, f p.fst p.snd = ∑ (c : γ) in s, ∑ (a : α) in t c, f a c
theorem finset.prod_fiberwise_of_maps_to {β : Type u} {α : Type v} {γ : Type w} [comm_monoid β] [decidable_eq γ] {s : finset α} {t : finset γ} {g : α → γ} (h : ∀ (x : α), x sg x t) (f : α → β) :
∏ (y : γ) in t, ∏ (x : α) in finset.filter (λ (x : α), g x = y) s, f x = ∏ (x : α) in s, f x
theorem finset.sum_fiberwise_of_maps_to {β : Type u} {α : Type v} {γ : Type w} [add_comm_monoid β] [decidable_eq γ] {s : finset α} {t : finset γ} {g : α → γ} (h : ∀ (x : α), x sg x t) (f : α → β) :
∑ (y : γ) in t, ∑ (x : α) in finset.filter (λ (x : α), g x = y) s, f x = ∑ (x : α) in s, f x
theorem finset.prod_image' {β : Type u} {α : Type v} {γ : Type w} {f : α → β} [comm_monoid β] [decidable_eq α] {s : finset γ} {g : γ → α} (h : γ → β) (eq : ∀ (c : γ), c sf (g c) = ∏ (x : γ) in finset.filter (λ (c' : γ), g c' = g c) s, h x) :
∏ (x : α) in finset.image g s, f x = ∏ (x : γ) in s, h x
theorem finset.sum_image' {β : Type u} {α : Type v} {γ : Type w} {f : α → β} [add_comm_monoid β] [decidable_eq α] {s : finset γ} {g : γ → α} (h : γ → β) (eq : ∀ (c : γ), c sf (g c) = ∑ (x : γ) in finset.filter (λ (c' : γ), g c' = g c) s, h x) :
∑ (x : α) in finset.image g s, f x = ∑ (x : γ) in s, h x
theorem finset.prod_mul_distrib {β : Type u} {α : Type v} {s : finset α} {f g : α → β} [comm_monoid β] :
∏ (x : α) in s, (f x) * g x = (∏ (x : α) in s, f x) * ∏ (x : α) in s, g x
theorem finset.sum_add_distrib {β : Type u} {α : Type v} {s : finset α} {f g : α → β} [add_comm_monoid β] :
∑ (x : α) in s, (f x + g x) = ∑ (x : α) in s, f x + ∑ (x : α) in s, g x
theorem finset.prod_comm {β : Type u} {α : Type v} {γ : Type w} [comm_monoid β] {s : finset γ} {t : finset α} {f : γ → α → β} :
∏ (x : γ) in s, ∏ (y : α) in t, f x y = ∏ (y : α) in t, ∏ (x : γ) in s, f x y
theorem finset.sum_comm {β : Type u} {α : Type v} {γ : Type w} [add_comm_monoid β] {s : finset γ} {t : finset α} {f : γ → α → β} :
∑ (x : γ) in s, ∑ (y : α) in t, f x y = ∑ (y : α) in t, ∑ (x : γ) in s, f x y
theorem finset.prod_product {β : Type u} {α : Type v} {γ : Type w} [comm_monoid β] {s : finset γ} {t : finset α} {f : γ × α → β} :
∏ (x : γ × α) in s.product t, f x = ∏ (x : γ) in s, ∏ (y : α) in t, f (x, y)
theorem finset.sum_product {β : Type u} {α : Type v} {γ : Type w} [add_comm_monoid β] {s : finset γ} {t : finset α} {f : γ × α → β} :
∑ (x : γ × α) in s.product t, f x = ∑ (x : γ) in s, ∑ (y : α) in t, f (x, y)
theorem finset.sum_product' {β : Type u} {α : Type v} {γ : Type w} [add_comm_monoid β] {s : finset γ} {t : finset α} {f : γ → α → β} :
∑ (x : γ × α) in s.product t, f x.fst x.snd = ∑ (x : γ) in s, ∑ (y : α) in t, f x y

An uncurried version of finset.sum_product

theorem finset.prod_product' {β : Type u} {α : Type v} {γ : Type w} [comm_monoid β] {s : finset γ} {t : finset α} {f : γ → α → β} :
∏ (x : γ × α) in s.product t, f x.fst x.snd = ∏ (x : γ) in s, ∏ (y : α) in t, f x y

An uncurried version of finset.prod_product.

theorem finset.sum_product_right {β : Type u} {α : Type v} {γ : Type w} [add_comm_monoid β] {s : finset γ} {t : finset α} {f : γ × α → β} :
∑ (x : γ × α) in s.product t, f x = ∑ (y : α) in t, ∑ (x : γ) in s, f (x, y)
theorem finset.prod_product_right {β : Type u} {α : Type v} {γ : Type w} [comm_monoid β] {s : finset γ} {t : finset α} {f : γ × α → β} :
∏ (x : γ × α) in s.product t, f x = ∏ (y : α) in t, ∏ (x : γ) in s, f (x, y)
theorem finset.prod_product_right' {β : Type u} {α : Type v} {γ : Type w} [comm_monoid β] {s : finset γ} {t : finset α} {f : γ → α → β} :
∏ (x : γ × α) in s.product t, f x.fst x.snd = ∏ (y : α) in t, ∏ (x : γ) in s, f x y

An uncurried version of finset.prod_product_right.

theorem finset.sum_product_right' {β : Type u} {α : Type v} {γ : Type w} [add_comm_monoid β] {s : finset γ} {t : finset α} {f : γ → α → β} :
∑ (x : γ × α) in s.product t, f x.fst x.snd = ∑ (y : α) in t, ∑ (x : γ) in s, f x y

An uncurried version of finset.prod_product_right

theorem finset.sum_hom_rel {β : Type u} {α : Type v} {γ : Type w} [add_comm_monoid β] [add_comm_monoid γ] {r : β → γ → Prop} {f : α → β} {g : α → γ} {s : finset α} (h₁ : r 0 0) (h₂ : ∀ (a : α) (b : β) (c : γ), r b cr (f a + b) (g a + c)) :
r (∑ (x : α) in s, f x) (∑ (x : α) in s, g x)
theorem finset.prod_hom_rel {β : Type u} {α : Type v} {γ : Type w} [comm_monoid β] [comm_monoid γ] {r : β → γ → Prop} {f : α → β} {g : α → γ} {s : finset α} (h₁ : r 1 1) (h₂ : ∀ (a : α) (b : β) (c : γ), r b cr ((f a) * b) ((g a) * c)) :
r (∏ (x : α) in s, f x) (∏ (x : α) in s, g x)
theorem finset.sum_eq_zero {β : Type u} {α : Type v} [add_comm_monoid β] {f : α → β} {s : finset α} (h : ∀ (x : α), x sf x = 0) :
∑ (x : α) in s, f x = 0
theorem finset.prod_eq_one {β : Type u} {α : Type v} [comm_monoid β] {f : α → β} {s : finset α} (h : ∀ (x : α), x sf x = 1) :
∏ (x : α) in s, f x = 1
theorem finset.sum_subset_zero_on_sdiff {β : Type u} {α : Type v} {s₁ s₂ : finset α} {f g : α → β} [add_comm_monoid β] [decidable_eq α] (h : s₁ s₂) (hg : ∀ (x : α), x s₂ \ s₁g x = 0) (hfg : ∀ (x : α), x s₁f x = g x) :
∑ (i : α) in s₁, f i = ∑ (i : α) in s₂, g i
theorem finset.prod_subset_one_on_sdiff {β : Type u} {α : Type v} {s₁ s₂ : finset α} {f g : α → β} [comm_monoid β] [decidable_eq α] (h : s₁ s₂) (hg : ∀ (x : α), x s₂ \ s₁g x = 1) (hfg : ∀ (x : α), x s₁f x = g x) :
∏ (i : α) in s₁, f i = ∏ (i : α) in s₂, g i
theorem finset.sum_subset {β : Type u} {α : Type v} {s₁ s₂ : finset α} {f : α → β} [add_comm_monoid β] (h : s₁ s₂) (hf : ∀ (x : α), x s₂x s₁f x = 0) :
∑ (x : α) in s₁, f x = ∑ (x : α) in s₂, f x
theorem finset.prod_subset {β : Type u} {α : Type v} {s₁ s₂ : finset α} {f : α → β} [comm_monoid β] (h : s₁ s₂) (hf : ∀ (x : α), x s₂x s₁f x = 1) :
∏ (x : α) in s₁, f x = ∏ (x : α) in s₂, f x
theorem finset.prod_filter_of_ne {β : Type u} {α : Type v} {s : finset α} {f : α → β} [comm_monoid β] {p : α → Prop} [decidable_pred p] (hp : ∀ (x : α), x sf x 1p x) :
∏ (x : α) in finset.filter p s, f x = ∏ (x : α) in s, f x
theorem finset.sum_filter_of_ne {β : Type u} {α : Type v} {s : finset α} {f : α → β} [add_comm_monoid β] {p : α → Prop} [decidable_pred p] (hp : ∀ (x : α), x sf x 0p x) :
∑ (x : α) in finset.filter p s, f x = ∑ (x : α) in s, f x
theorem finset.prod_filter_ne_one {β : Type u} {α : Type v} {s : finset α} {f : α → β} [comm_monoid β] [Π (x : α), decidable (f x 1)] :
∏ (x : α) in finset.filter (λ (x : α), f x 1) s, f x = ∏ (x : α) in s, f x
theorem finset.sum_filter_ne_zero {β : Type u} {α : Type v} {s : finset α} {f : α → β} [add_comm_monoid β] [Π (x : α), decidable (f x 0)] :
∑ (x : α) in finset.filter (λ (x : α), f x 0) s, f x = ∑ (x : α) in s, f x
theorem finset.prod_filter {β : Type u} {α : Type v} {s : finset α} [comm_monoid β] (p : α → Prop) [decidable_pred p] (f : α → β) :
∏ (a : α) in finset.filter p s, f a = ∏ (a : α) in s, ite (p a) (f a) 1
theorem finset.sum_filter {β : Type u} {α : Type v} {s : finset α} [add_comm_monoid β] (p : α → Prop) [decidable_pred p] (f : α → β) :
∑ (a : α) in finset.filter p s, f a = ∑ (a : α) in s, ite (p a) (f a) 0
theorem finset.prod_eq_single_of_mem {β : Type u} {α : Type v} [comm_monoid β] {s : finset α} {f : α → β} (a : α) (h : a s) (h₀ : ∀ (b : α), b sb af b = 1) :
∏ (x : α) in s, f x = f a
theorem finset.sum_eq_single_of_mem {β : Type u} {α : Type v} [add_comm_monoid β] {s : finset α} {f : α → β} (a : α) (h : a s) (h₀ : ∀ (b : α), b sb af b = 0) :
∑ (x : α) in s, f x = f a
theorem finset.sum_eq_single {β : Type u} {α : Type v} [add_comm_monoid β] {s : finset α} {f : α → β} (a : α) (h₀ : ∀ (b : α), b sb af b = 0) (h₁ : a sf a = 0) :
∑ (x : α) in s, f x = f a
theorem finset.prod_eq_single {β : Type u} {α : Type v} [comm_monoid β] {s : finset α} {f : α → β} (a : α) (h₀ : ∀ (b : α), b sb af b = 1) (h₁ : a sf a = 1) :
∏ (x : α) in s, f x = f a
theorem finset.prod_eq_mul_of_mem {β : Type u} {α : Type v} [comm_monoid β] {s : finset α} {f : α → β} (a b : α) (ha : a s) (hb : b s) (hn : a b) (h₀ : ∀ (c : α), c sc a c bf c = 1) :
∏ (x : α) in s, f x = (f a) * f b
theorem finset.sum_eq_add_of_mem {β : Type u} {α : Type v} [add_comm_monoid β] {s : finset α} {f : α → β} (a b : α) (ha : a s) (hb : b s) (hn : a b) (h₀ : ∀ (c : α), c sc a c bf c = 0) :
∑ (x : α) in s, f x = f a + f b
theorem finset.prod_eq_mul {β : Type u} {α : Type v} [comm_monoid β] {s : finset α} {f : α → β} (a b : α) (hn : a b) (h₀ : ∀ (c : α), c sc a c bf c = 1) (ha : a sf a = 1) (hb : b sf b = 1) :
∏ (x : α) in s, f x = (f a) * f b
theorem finset.sum_eq_add {β : Type u} {α : Type v} [add_comm_monoid β] {s : finset α} {f : α → β} (a b : α) (hn : a b) (h₀ : ∀ (c : α), c sc a c bf c = 0) (ha : a sf a = 0) (hb : b sf b = 0) :
∑ (x : α) in s, f x = f a + f b
theorem finset.prod_attach {β : Type u} {α : Type v} {s : finset α} [comm_monoid β] {f : α → β} :
∏ (x : {x // x s}) in s.attach, f x = ∏ (x : α) in s, f x
theorem finset.sum_attach {β : Type u} {α : Type v} {s : finset α} [add_comm_monoid β] {f : α → β} :
∑ (x : {x // x s}) in s.attach, f x = ∑ (x : α) in s, f x
@[simp]
theorem finset.prod_subtype_eq_prod_filter {β : Type u} {α : Type v} {s : finset α} [comm_monoid β] (f : α → β) {p : α → Prop} [decidable_pred p] :
∏ (x : subtype p) in finset.subtype p s, f x = ∏ (x : α) in finset.filter p s, f x

A product over s.subtype p equals one over s.filter p.

@[simp]
theorem finset.sum_subtype_eq_sum_filter {β : Type u} {α : Type v} {s : finset α} [add_comm_monoid β] (f : α → β) {p : α → Prop} [decidable_pred p] :
∑ (x : subtype p) in finset.subtype p s, f x = ∑ (x : α) in finset.filter p s, f x

A sum over s.subtype p equals one over s.filter p.

theorem finset.prod_subtype_of_mem {β : Type u} {α : Type v} {s : finset α} [comm_monoid β] (f : α → β) {p : α → Prop} [decidable_pred p] (h : ∀ (x : α), x sp x) :
∏ (x : subtype p) in finset.subtype p s, f x = ∏ (x : α) in s, f x

If all elements of a finset satisfy the predicate p, a product over s.subtype p equals that product over s.

theorem finset.sum_subtype_of_mem {β : Type u} {α : Type v} {s : finset α} [add_comm_monoid β] (f : α → β) {p : α → Prop} [decidable_pred p] (h : ∀ (x : α), x sp x) :
∑ (x : subtype p) in finset.subtype p s, f x = ∑ (x : α) in s, f x

If all elements of a finset satisfy the predicate p, a sum over s.subtype p equals that sum over s.

theorem finset.sum_subtype_map_embedding {β : Type u} {α : Type v} [add_comm_monoid β] {p : α → Prop} {s : finset {x // p x}} {f : {x // p x} → β} {g : α → β} (h : ∀ (x : {x // p x}), x sg x = f x) :
∑ (x : α) in finset.map (function.embedding.subtype (λ (x : α), p x)) s, g x = ∑ (x : {x // p x}) in s, f x

A sum of a function over a finset in a subtype equals a sum in the main type of a function that agrees with the first function on that finset.

theorem finset.prod_subtype_map_embedding {β : Type u} {α : Type v} [comm_monoid β] {p : α → Prop} {s : finset {x // p x}} {f : {x // p x} → β} {g : α → β} (h : ∀ (x : {x // p x}), x sg x = f x) :
∏ (x : α) in finset.map (function.embedding.subtype (λ (x : α), p x)) s, g x = ∏ (x : {x // p x}) in s, f x

A product of a function over a finset in a subtype equals a product in the main type of a function that agrees with the first function on that finset.

theorem finset.sum_coe_sort_eq_attach {β : Type u} {α : Type v} (s : finset α) [add_comm_monoid β] (f : s → β) :
∑ (i : s), f i = ∑ (i : {x // x s}) in s.attach, f i
theorem finset.prod_coe_sort_eq_attach {β : Type u} {α : Type v} (s : finset α) [comm_monoid β] (f : s → β) :
∏ (i : s), f i = ∏ (i : {x // x s}) in s.attach, f i
theorem finset.sum_coe_sort {β : Type u} {α : Type v} (s : finset α) (f : α → β) [add_comm_monoid β] :
∑ (i : s), f i = ∑ (i : α) in s, f i
theorem finset.prod_coe_sort {β : Type u} {α : Type v} (s : finset α) (f : α → β) [comm_monoid β] :
∏ (i : s), f i = ∏ (i : α) in s, f i
theorem finset.prod_finset_coe {β : Type u} {α : Type v} [comm_monoid β] (f : α → β) (s : finset α) :
∏ (i : s), f i = ∏ (i : α) in s, f i
theorem finset.sum_finset_coe {β : Type u} {α : Type v} [add_comm_monoid β] (f : α → β) (s : finset α) :
∑ (i : s), f i = ∑ (i : α) in s, f i
theorem finset.prod_subtype {β : Type u} {α : Type v} [comm_monoid β] {p : α → Prop} {F : fintype (subtype p)} (s : finset α) (h : ∀ (x : α), x s p x) (f : α → β) :
∏ (a : α) in s, f a = ∏ (a : subtype p), f a
theorem finset.sum_subtype {β : Type u} {α : Type v} [add_comm_monoid β] {p : α → Prop} {F : fintype (subtype p)} (s : finset α) (h : ∀ (x : α), x s p x) (f : α → β) :
∑ (a : α) in s, f a = ∑ (a : subtype p), f a
theorem finset.prod_apply_dite {β : Type u} {α : Type v} {γ : Type w} [comm_monoid β] {s : finset α} {p : α → Prop} {hp : decidable_pred p} [decidable_pred (λ (x : α), ¬p x)] (f : Π (x : α), p x → γ) (g : Π (x : α), ¬p x → γ) (h : γ → β) :
∏ (x : α) in s, h (dite (p x) (λ (hx : p x), f x hx) (λ (hx : ¬p x), g x hx)) = (∏ (x : {x // x finset.filter p s}) in (finset.filter p s).attach, h (f x.val _)) * ∏ (x : {x // x finset.filter (λ (x : α), ¬p x) s}) in (finset.filter (λ (x : α), ¬p x) s).attach, h (g x.val _)
theorem finset.sum_apply_dite {β : Type u} {α : Type v} {γ : Type w} [add_comm_monoid β] {s : finset α} {p : α → Prop} {hp : decidable_pred p} [decidable_pred (λ (x : α), ¬p x)] (f : Π (x : α), p x → γ) (g : Π (x : α), ¬p x → γ) (h : γ → β) :
∑ (x : α) in s, h (dite (p x) (λ (hx : p x), f x hx) (λ (hx : ¬p x), g x hx)) = ∑ (x : {x // x finset.filter p s}) in (finset.filter p s).attach, h (f x.val _) + ∑ (x : {x // x finset.filter (λ (x : α), ¬p x) s}) in (finset.filter (λ (x : α), ¬p x) s).attach, h (g x.val _)
theorem finset.prod_apply_ite {β : Type u} {α : Type v} {γ : Type w} [comm_monoid β] {s : finset α} {p : α → Prop} {hp : decidable_pred p} (f g : α → γ) (h : γ → β) :
∏ (x : α) in s, h (ite (p x) (f x) (g x)) = (∏ (x : α) in finset.filter p s, h (f x)) * ∏ (x : α) in finset.filter (λ (x : α), ¬p x) s, h (g x)
theorem finset.sum_apply_ite {β : Type u} {α : Type v} {γ : Type w} [add_comm_monoid β] {s : finset α} {p : α → Prop} {hp : decidable_pred p} (f g : α → γ) (h : γ → β) :
∑ (x : α) in s, h (ite (p x) (f x) (g x)) = ∑ (x : α) in finset.filter p s, h (f x) + ∑ (x : α) in finset.filter (λ (x : α), ¬p x) s, h (g x)
theorem finset.sum_dite {β : Type u} {α : Type v} [add_comm_monoid β] {s : finset α} {p : α → Prop} {hp : decidable_pred p} (f : Π (x : α), p x → β) (g : Π (x : α), ¬p x → β) :
∑ (x : α) in s, dite (p x) (λ (hx : p x), f x hx) (λ (hx : ¬p x), g x hx) = ∑ (x : {x // x finset.filter p s}) in (finset.filter p s).attach, f x.val _ + ∑ (x : {x // x finset.filter (λ (x : α), ¬p x) s}) in (finset.filter (λ (x : α), ¬p x) s).attach, g x.val _
theorem finset.prod_dite {β : Type u} {α : Type v} [comm_monoid β] {s : finset α} {p : α → Prop} {hp : decidable_pred p} (f : Π (x : α), p x → β) (g : Π (x : α), ¬p x → β) :
∏ (x : α) in s, dite (p x) (λ (hx : p x), f x hx) (λ (hx : ¬p x), g x hx) = (∏ (x : {x // x finset.filter p s}) in (finset.filter p s).attach, f x.val _) * ∏ (x : {x // x finset.filter (λ (x : α), ¬p x) s}) in (finset.filter (λ (x : α), ¬p x) s).attach, g x.val _
theorem finset.prod_ite {β : Type u} {α : Type v} [comm_monoid β] {s : finset α} {p : α → Prop} {hp : decidable_pred p} (f g : α → β) :
∏ (x : α) in s, ite (p x) (f x) (g x) = (∏ (x : α) in finset.filter p s, f x) * ∏ (x : α) in finset.filter (λ (x : α), ¬p x) s, g x
theorem finset.sum_ite {β : Type u} {α : Type v} [add_comm_monoid β] {s : finset α} {p : α → Prop} {hp : decidable_pred p} (f g : α → β) :
∑ (x : α) in s, ite (p x) (f x) (g x) = ∑ (x : α) in finset.filter p s, f x + ∑ (x : α) in finset.filter (λ (x : α), ¬p x) s, g x
theorem finset.prod_ite_of_false {β : Type u} {α : Type v} {s : finset α} [comm_monoid β] {p : α → Prop} {hp : decidable_pred p} (f g : α → β) (h : ∀ (x : α), x s¬p x) :
∏ (x : α) in s, ite (p x) (f x) (g x) = ∏ (x : α) in s, g x
theorem finset.sum_ite_of_false {β : Type u} {α : Type v} {s : finset α} [add_comm_monoid β] {p : α → Prop} {hp : decidable_pred p} (f g : α → β) (h : ∀ (x : α), x s¬p x) :
∑ (x : α) in s, ite (p x) (f x) (g x) = ∑ (x : α) in s, g x
theorem finset.prod_ite_of_true {β : Type u} {α : Type v} {s : finset α} [comm_monoid β] {p : α → Prop} {hp : decidable_pred p} (f g : α → β) (h : ∀ (x : α), x sp x) :
∏ (x : α) in s, ite (p x) (f x) (g x) = ∏ (x : α) in s, f x
theorem finset.sum_ite_of_true {β : Type u} {α : Type v} {s : finset α} [add_comm_monoid β] {p : α → Prop} {hp : decidable_pred p} (f g : α → β) (h : ∀ (x : α), x sp x) :
∑ (x : α) in s, ite (p x) (f x) (g x) = ∑ (x : α) in s, f x
theorem finset.sum_apply_ite_of_false {β : Type u} {α : Type v} {γ : Type w} {s : finset α} [add_comm_monoid β] {p : α → Prop} {hp : decidable_pred p} (f g : α → γ) (k : γ → β) (h : ∀ (x : α), x s¬p x) :
∑ (x : α) in s, k (ite (p x) (f x) (g x)) = ∑ (x : α) in s, k (g x)
theorem finset.prod_apply_ite_of_false {β : Type u} {α : Type v} {γ : Type w} {s : finset α} [comm_monoid β] {p : α → Prop} {hp : decidable_pred p} (f g : α → γ) (k : γ → β) (h : ∀ (x : α), x s¬p x) :
∏ (x : α) in s, k (ite (p x) (f x) (g x)) = ∏ (x : α) in s, k (g x)
theorem finset.sum_apply_ite_of_true {β : Type u} {α : Type v} {γ : Type w} {s : finset α} [add_comm_monoid β] {p : α → Prop} {hp : decidable_pred p} (f g : α → γ) (k : γ → β) (h : ∀ (x : α), x sp x) :
∑ (x : α) in s, k (ite (p x) (f x) (g x)) = ∑ (x : α) in s, k (f x)
theorem finset.prod_apply_ite_of_true {β : Type u} {α : Type v} {γ : Type w} {s : finset α} [comm_monoid β] {p : α → Prop} {hp : decidable_pred p} (f g : α → γ) (k : γ → β) (h : ∀ (x : α), x sp x) :
∏ (x : α) in s, k (ite (p x) (f x) (g x)) = ∏ (x : α) in s, k (f x)
theorem finset.sum_extend_by_zero {β : Type u} {α : Type v} [add_comm_monoid β] [decidable_eq α] (s : finset α) (f : α → β) :
∑ (i : α) in s, ite (i s) (f i) 0 = ∑ (i : α) in s, f i
theorem finset.prod_extend_by_one {β : Type u} {α : Type v} [comm_monoid β] [decidable_eq α] (s : finset α) (f : α → β) :
∏ (i : α) in s, ite (i s) (f i) 1 = ∏ (i : α) in s, f i
@[simp]
theorem finset.sum_dite_eq {β : Type u} {α : Type v} [add_comm_monoid β] [decidable_eq α] (s : finset α) (a : α) (b : Π (x : α), a = x → β) :
∑ (x : α) in s, dite (a = x) (λ (h : a = x), b x h) (λ (h : ¬a = x), 0) = ite (a s) (b a rfl) 0
@[simp]
theorem finset.prod_dite_eq {β : Type u} {α : Type v} [comm_monoid β] [decidable_eq α] (s : finset α) (a : α) (b : Π (x : α), a = x → β) :
∏ (x : α) in s, dite (a = x) (λ (h : a = x), b x h) (λ (h : ¬a = x), 1) = ite (a s) (b a rfl) 1
@[simp]
theorem finset.prod_dite_eq' {β : Type u} {α : Type v} [comm_monoid β] [decidable_eq α] (s : finset α) (a : α) (b : Π (x : α), x = a → β) :
∏ (x : α) in s, dite (x = a) (λ (h : x = a), b x h) (λ (h : ¬x = a), 1) = ite (a s) (b a rfl) 1
@[simp]
theorem finset.sum_dite_eq' {β : Type u} {α : Type v} [add_comm_monoid β] [decidable_eq α] (s : finset α) (a : α) (b : Π (x : α), x = a → β) :
∑ (x : α) in s, dite (x = a) (λ (h : x = a), b x h) (λ (h : ¬x = a), 0) = ite (a s) (b a rfl) 0
@[simp]
theorem finset.prod_ite_eq {β : Type u} {α : Type v} [comm_monoid β] [decidable_eq α] (s : finset α) (a : α) (b : α → β) :
∏ (x : α) in s, ite (a = x) (b x) 1 = ite (a s) (b a) 1
@[simp]
theorem finset.sum_ite_eq {β : Type u} {α : Type v} [add_comm_monoid β] [decidable_eq α] (s : finset α) (a : α) (b : α → β) :
∑ (x : α) in s, ite (a = x) (b x) 0 = ite (a s) (b a) 0
@[simp]
theorem finset.sum_ite_eq' {β : Type u} {α : Type v} [add_comm_monoid β] [decidable_eq α] (s : finset α) (a : α) (b : α → β) :
∑ (x : α) in s, ite (x = a) (b x) 0 = ite (a s) (b a) 0

A sum taken over a conditional whose condition is an equality test on the index and whose alternative is 0 has value either the term at that index or 0.

The difference with finset.sum_ite_eq is that the arguments to eq are swapped.

@[simp]
theorem finset.prod_ite_eq' {β : Type u} {α : Type v} [comm_monoid β] [decidable_eq α] (s : finset α) (a : α) (b : α → β) :
∏ (x : α) in s, ite (x = a) (b x) 1 = ite (a s) (b a) 1

A product taken over a conditional whose condition is an equality test on the index and whose alternative is 1 has value either the term at that index or 1.

The difference with finset.prod_ite_eq is that the arguments to eq are swapped.

theorem finset.sum_ite_index {β : Type u} {α : Type v} [add_comm_monoid β] (p : Prop) [decidable p] (s t : finset α) (f : α → β) :
∑ (x : α) in ite p s t, f x = ite p (∑ (x : α) in s, f x) (∑ (x : α) in t, f x)
theorem finset.prod_ite_index {β : Type u} {α : Type v} [comm_monoid β] (p : Prop) [decidable p] (s t : finset α) (f : α → β) :
∏ (x : α) in ite p s t, f x = ite p (∏ (x : α) in s, f x) (∏ (x : α) in t, f x)
@[simp]
theorem finset.sum_dite_irrel {β : Type u} {α : Type v} [add_comm_monoid β] (p : Prop) [decidable p] (s : finset α) (f : p → α → β) (g : ¬p → α → β) :
∑ (x : α) in s, dite p (λ (h : p), f h x) (λ (h : ¬p), g h x) = dite p (λ (h : p), ∑ (x : α) in s, f h x) (λ (h : ¬p), ∑ (x : α) in s, g h x)
@[simp]
theorem finset.prod_dite_irrel {β : Type u} {α : Type v} [comm_monoid β] (p : Prop) [decidable p] (s : finset α) (f : p → α → β) (g : ¬p → α → β) :
∏ (x : α) in s, dite p (λ (h : p), f h x) (λ (h : ¬p), g h x) = dite p (λ (h : p), ∏ (x : α) in s, f h x) (λ (h : ¬p), ∏ (x : α) in s, g h x)
@[simp]
theorem finset.sum_pi_single' {ι : Type u_1} {M : Type u_2} [decidable_eq ι] [add_comm_monoid M] (i : ι) (x : M) (s : finset ι) :
∑ (j : ι) in s, pi.single i x j = ite (i s) x 0
@[simp]
theorem finset.sum_pi_single {ι : Type u_1} {M : ι → Type u_2} [decidable_eq ι] [Π (i : ι), add_comm_monoid (M i)] (i : ι) (f : Π (i : ι), M i) (s : finset ι) :
∑ (j : ι) in s, pi.single j (f j) i = ite (i s) (f i) 0
theorem finset.prod_bij_ne_one {β : Type u} {α : Type v} {γ : Type w} [comm_monoid β] {s : finset α} {t : finset γ} {f : α → β} {g : γ → β} (i : Π (a : α), a sf a 1 → γ) (hi : ∀ (a : α) (h₁ : a s) (h₂ : f a 1), i a h₁ h₂ t) (i_inj : ∀ (a₁ a₂ : α) (h₁₁ : a₁ s) (h₁₂ : f a₁ 1) (h₂₁ : a₂ s) (h₂₂ : f a₂ 1), i a₁ h₁₁ h₁₂ = i a₂ h₂₁ h₂₂a₁ = a₂) (i_surj : ∀ (b : γ), b tg b 1(∃ (a : α) (h₁ : a s) (h₂ : f a 1), b = i a h₁ h₂)) (h : ∀ (a : α) (h₁ : a s) (h₂ : f a 1), f a = g (i a h₁ h₂)) :
∏ (x : α) in s, f x = ∏ (x : γ) in t, g x
theorem finset.sum_bij_ne_zero {β : Type u} {α : Type v} {γ : Type w} [add_comm_monoid β] {s : finset α} {t : finset γ} {f : α → β} {g : γ → β} (i : Π (a : α), a sf a 0 → γ) (hi : ∀ (a : α) (h₁ : a s) (h₂ : f a 0), i a h₁ h₂ t) (i_inj : ∀ (a₁ a₂ : α) (h₁₁ : a₁ s) (h₁₂ : f a₁ 0) (h₂₁ : a₂ s) (h₂₂ : f a₂ 0), i a₁ h₁₁ h₁₂ = i a₂ h₂₁ h₂₂a₁ = a₂) (i_surj : ∀ (b : γ), b tg b 0(∃ (a : α) (h₁ : a s) (h₂ : f a 0), b = i a h₁ h₂)) (h : ∀ (a : α) (h₁ : a s) (h₂ : f a 0), f a = g (i a h₁ h₂)) :
∑ (x : α) in s, f x = ∑ (x : γ) in t, g x
theorem finset.sum_dite_of_false {β : Type u} {α : Type v} {s : finset α} [add_comm_monoid β] {p : α → Prop} {hp : decidable_pred p} (h : ∀ (x : α), x s¬p x) (f : Π (x : α), p x → β) (g : Π (x : α), ¬p x → β) :
∑ (x : α) in s, dite (p x) (λ (hx : p x), f x hx) (λ (hx : ¬p x), g x hx) = ∑ (x : s), g x.val _
theorem finset.prod_dite_of_false {β : Type u} {α : Type v} {s : finset α} [comm_monoid β] {p : α → Prop} {hp : decidable_pred p} (h : ∀ (x : α), x s¬p x) (f : Π (x : α), p x → β) (g : Π (x : α), ¬p x → β) :
∏ (x : α) in s, dite (p x) (λ (hx : p x), f x hx) (λ (hx : ¬p x), g x hx) = ∏ (x : s), g x.val _
theorem finset.sum_dite_of_true {β : Type u} {α : Type v} {s : finset α} [add_comm_monoid β] {p : α → Prop} {hp : decidable_pred p} (h : ∀ (x : α), x sp x) (f : Π (x : α), p x → β) (g : Π (x : α), ¬p x → β) :
∑ (x : α) in s, dite (p x) (λ (hx : p x), f x hx) (λ (hx : ¬p x), g x hx) = ∑ (x : s), f x.val _
theorem finset.prod_dite_of_true {β : Type u} {α : Type v} {s : finset α} [comm_monoid β] {p : α → Prop} {hp : decidable_pred p} (h : ∀ (x : α), x sp x) (f : Π (x : α), p x → β) (g : Π (x : α), ¬p x → β) :
∏ (x : α) in s, dite (p x) (λ (hx : p x), f x hx) (λ (hx : ¬p x), g x hx) = ∏ (x : s), f x.val _
theorem finset.nonempty_of_sum_ne_zero {β : Type u} {α : Type v} {s : finset α} {f : α → β} [add_comm_monoid β] (h : ∑ (x : α) in s, f x 0) :
theorem finset.nonempty_of_prod_ne_one {β : Type u} {α : Type v} {s : finset α} {f : α → β} [comm_monoid β] (h : ∏ (x : α) in s, f x 1) :
theorem finset.exists_ne_zero_of_sum_ne_zero {β : Type u} {α : Type v} {s : finset α} {f : α → β} [add_comm_monoid β] (h : ∑ (x : α) in s, f x 0) :
∃ (a : α) (H : a s), f a 0
theorem finset.exists_ne_one_of_prod_ne_one {β : Type u} {α : Type v} {s : finset α} {f : α → β} [comm_monoid β] (h : ∏ (x : α) in s, f x 1) :
∃ (a : α) (H : a s), f a 1
theorem finset.prod_range_succ_comm {β : Type u} [comm_monoid β] (f : → β) (n : ) :
∏ (x : ) in finset.range (n + 1), f x = (f n) * ∏ (x : ) in finset.range n, f x
theorem finset.sum_range_succ_comm {β : Type u} [add_comm_monoid β] (f : → β) (n : ) :
∑ (x : ) in finset.range (n + 1), f x = f n + ∑ (x : ) in finset.range n, f x
theorem finset.prod_range_succ {β : Type u} [comm_monoid β] (f : → β) (n : ) :
∏ (x : ) in finset.range (n + 1), f x = (∏ (x : ) in finset.range n, f x) * f n
theorem finset.sum_range_succ {β : Type u} [add_comm_monoid β] (f : → β) (n : ) :
∑ (x : ) in finset.range (n + 1), f x = ∑ (x : ) in finset.range n, f x + f n
theorem finset.prod_range_succ' {β : Type u} [comm_monoid β] (f : → β) (n : ) :
∏ (k : ) in finset.range (n + 1), f k = (∏ (k : ) in finset.range n, f (k + 1)) * f 0
theorem finset.sum_range_succ' {β : Type u} [add_comm_monoid β] (f : → β) (n : ) :
∑ (k : ) in finset.range (n + 1), f k = ∑ (k : ) in finset.range n, f (k + 1) + f 0
theorem finset.eventually_constant_sum {β : Type u} [add_comm_monoid β] {u : → β} {N : } (hu : ∀ (n : ), n Nu n = 0) {n : } (hn : N n) :
∑ (k : ) in finset.range (n + 1), u k = ∑ (k : ) in finset.range (N + 1), u k
theorem finset.eventually_constant_prod {β : Type u} [comm_monoid β] {u : → β} {N : } (hu : ∀ (n : ), n Nu n = 1) {n : } (hn : N n) :
∏ (k : ) in finset.range (n + 1), u k = ∏ (k : ) in finset.range (N + 1), u k
theorem finset.prod_range_add {β : Type u} [comm_monoid β] (f : → β) (n m : ) :
∏ (x : ) in finset.range (n + m), f x = (∏ (x : ) in finset.range n, f x) * ∏ (x : ) in finset.range m, f (n + x)
theorem finset.sum_range_add {β : Type u} [add_comm_monoid β] (f : → β) (n m : ) :
∑ (x : ) in finset.range (n + m), f x = ∑ (x : ) in finset.range n, f x + ∑ (x : ) in finset.range m, f (n + x)
theorem finset.sum_range_add_sub_sum_range {α : Type u_1} [add_comm_group α] (f : → α) (n m : ) :
∑ (k : ) in finset.range (n + m), f k - ∑ (k : ) in finset.range n, f k = ∑ (k : ) in finset.range m, f (n + k)
theorem finset.prod_range_add_div_prod_range {α : Type u_1} [comm_group α] (f : → α) (n m : ) :
(∏ (k : ) in finset.range (n + m), f k) / ∏ (k : ) in finset.range n, f k = ∏ (k : ) in finset.range m, f (n + k)
theorem finset.sum_range_zero {β : Type u} [add_comm_monoid β] (f : → β) :
∑ (k : ) in finset.range 0, f k = 0
theorem finset.prod_range_zero {β : Type u} [comm_monoid β] (f : → β) :
∏ (k : ) in finset.range 0, f k = 1
theorem finset.sum_range_one {β : Type u} [add_comm_monoid β] (f : → β) :
∑ (k : ) in finset.range 1, f k = f 0
theorem finset.prod_range_one {β : Type u} [comm_monoid β] (f : → β) :
∏ (k : ) in finset.range 1, f k = f 0
theorem finset.prod_multiset_map_count {α : Type v} [decidable_eq α] (s : multiset α) {M : Type u_1} [comm_monoid M] (f : α → M) :
(multiset.map f s).prod = ∏ (m : α) in s.to_finset, f m ^ multiset.count m s
theorem finset.sum_multiset_map_count {α : Type v} [decidable_eq α] (s : multiset α) {M : Type u_1} [add_comm_monoid M] (f : α → M) :
(multiset.map f s).sum = ∑ (m : α) in s.to_finset, multiset.count m s f m
theorem finset.sum_multiset_count {α : Type v} [decidable_eq α] [add_comm_monoid α] (s : multiset α) :
s.sum = ∑ (m : α) in s.to_finset, multiset.count m s m
theorem finset.prod_multiset_count {α : Type v} [decidable_eq α] [comm_monoid α] (s : multiset α) :
s.prod = ∏ (m : α) in s.to_finset, m ^ multiset.count m s
theorem finset.prod_multiset_count_of_subset {α : Type v} [decidable_eq α] [comm_monoid α] (m : multiset α) (s : finset α) (hs : m.to_finset s) :
m.prod = ∏ (i : α) in s, i ^ multiset.count i m
theorem finset.sum_multiset_count_of_subset {α : Type v} [decidable_eq α] [add_comm_monoid α] (m : multiset α) (s : finset α) (hs : m.to_finset s) :
m.sum = ∑ (i : α) in s, multiset.count i m i
theorem finset.sum_mem_multiset {β : Type u} {α : Type v} [add_comm_monoid β] [decidable_eq α] (m : multiset α) (f : {x // x m} → β) (g : α → β) (hfg : ∀ (x : {x // x m}), f x = g x) :
∑ (x : {x // x m}), f x = ∑ (x : α) in m.to_finset, g x
theorem finset.prod_mem_multiset {β : Type u} {α : Type v} [comm_monoid β] [decidable_eq α] (m : multiset α) (f : {x // x m} → β) (g : α → β) (hfg : ∀ (x : {x // x m}), f x = g x) :
∏ (x : {x // x m}), f x = ∏ (x : α) in m.to_finset, g x
theorem finset.prod_induction {α : Type v} {s : finset α} {M : Type u_1} [comm_monoid M] (f : α → M) (p : M → Prop) (p_mul : ∀ (a b : M), p ap bp (a * b)) (p_one : p 1) (p_s : ∀ (x : α), x sp (f x)) :
p (∏ (x : α) in s, f x)

To prove a property of a product, it suffices to prove that the property is multiplicative and holds on factors.

theorem finset.sum_induction {α : Type v} {s : finset α} {M : Type u_1} [add_comm_monoid M] (f : α → M) (p : M → Prop) (p_mul : ∀ (a b : M), p ap bp (a + b)) (p_one : p 0) (p_s : ∀ (x : α), x sp (f x)) :
p (∑ (x : α) in s, f x)

To prove a property of a sum, it suffices to prove that the property is additive and holds on summands.

theorem finset.sum_induction_nonempty {α : Type v} {s : finset α} {M : Type u_1} [add_comm_monoid M] (f : α → M) (p : M → Prop) (p_mul : ∀ (a b : M), p ap bp (a + b)) (hs_nonempty : s.nonempty) (p_s : ∀ (x : α), x sp (f x)) :
p (∑ (x : α) in s, f x)

To prove a property of a sum, it suffices to prove that the property is additive and holds on summands.

theorem finset.prod_induction_nonempty {α : Type v} {s : finset α} {M : Type u_1} [comm_monoid M] (f : α → M) (p : M → Prop) (p_mul : ∀ (a b : M), p ap bp (a * b)) (hs_nonempty : s.nonempty) (p_s : ∀ (x : α), x sp (f x)) :
p (∏ (x : α) in s, f x)

To prove a property of a product, it suffices to prove that the property is multiplicative and holds on factors.

theorem finset.prod_range_induction {M : Type u_1} [comm_monoid M] (f s : → M) (h0 : s 0 = 1) (h : ∀ (n : ), s (n + 1) = (s n) * f n) (n : ) :
∏ (k : ) in finset.range n, f k = s n

For any product along {0, ..., n-1} of a commutative-monoid-valued function, we can verify that it's equal to a different function just by checking ratios of adjacent terms. This is a multiplicative discrete analogue of the fundamental theorem of calculus.

theorem finset.sum_range_induction {M : Type u_1} [add_comm_monoid M] (f s : → M) (h0 : s 0 = 0) (h : ∀ (n : ), s (n + 1) = s n + f n) (n : ) :
∑ (k : ) in finset.range n, f k = s n

For any sum along {0, ..., n-1} of a commutative-monoid-valued function, we can verify that it's equal to a different function just by checking differences of adjacent terms. This is a discrete analogue of the fundamental theorem of calculus.

theorem finset.sum_range_sub {G : Type u_1} [add_comm_group G] (f : → G) (n : ) :
∑ (i : ) in finset.range n, (f (i + 1) - f i) = f n - f 0

A telescoping sum along {0, ..., n - 1} of an additive commutative group valued function reduces to the difference of the last and first terms.

theorem finset.sum_range_sub' {G : Type u_1} [add_comm_group G] (f : → G) (n : ) :
∑ (i : ) in finset.range n, (f i - f (i + 1)) = f 0 - f n
theorem finset.prod_range_div {M : Type u_1} [comm_group M] (f : → M) (n : ) :
∏ (i : ) in finset.range n, (f (i + 1)) * (f i)⁻¹ = (f n) * (f 0)⁻¹

A telescoping product along {0, ..., n - 1} of a commutative group valued function reduces to the ratio of the last and first factors.

theorem finset.prod_range_div' {M : Type u_1} [comm_group M] (f : → M) (n : ) :
∏ (i : ) in finset.range n, (f i) * (f (i + 1))⁻¹ = (f 0) * (f n)⁻¹
theorem finset.sum_range_sub_of_monotone {f : } (h : monotone f) (n : ) :
∑ (i : ) in finset.range n, (f (i + 1) - f i) = f n - f 0

A telescoping sum along {0, ..., n-1} of an -valued function reduces to the difference of the last and first terms when the function we are summing is monotone.

@[simp]
theorem finset.prod_const {β : Type u} {α : Type v} {s : finset α} [comm_monoid β] (b : β) :
∏ (x : α) in s, b = b ^ s.card
@[simp]
theorem finset.sum_const {β : Type u} {α : Type v} {s : finset α} [add_comm_monoid β] (b : β) :
∑ (x : α) in s, b = s.card b
theorem finset.nsmul_eq_sum_const {β : Type u} [add_comm_monoid β] (b : β) (n : ) :
n b = ∑ (k : ) in finset.range n, b
theorem finset.pow_eq_prod_const {β : Type u} [comm_monoid β] (b : β) (n : ) :
b ^ n = ∏ (k : ) in finset.range n, b
theorem finset.sum_nsmul {β : Type u} {α : Type v} [add_comm_monoid β] (s : finset α) (n : ) (f : α → β) :
∑ (x : α) in s, n f x = n ∑ (x : α) in s, f x
theorem finset.prod_pow {β : Type u} {α : Type v} [comm_monoid β] (s : finset α) (n : ) (f : α → β) :
∏ (x : α) in s, f x ^ n = (∏ (x : α) in s, f x) ^ n
theorem finset.prod_flip {β : Type u} [comm_monoid β] {n : } (f : → β) :
∏ (r : ) in finset.range (n + 1), f (n - r) = ∏ (k : ) in finset.range (n + 1), f k
theorem finset.sum_flip {β : Type u} [add_comm_monoid β] {n : } (f : → β) :
∑ (r : ) in finset.range (n + 1), f (n - r) = ∑ (k : ) in finset.range (n + 1), f k
theorem finset.prod_involution {β : Type u} {α : Type v} [comm_monoid β] {s : finset α} {f : α → β} (g : Π (a : α), a s → α) (h : ∀ (a : α) (ha : a s), (f a) * f (g a ha) = 1) (g_ne : ∀ (a : α) (ha : a s), f a 1g a ha a) (g_mem : ∀ (a : α) (ha : a s), g a ha s) (g_inv : ∀ (a : α) (ha : a s), g (g a ha) _ = a) :
∏ (x : α) in s, f x = 1
theorem finset.sum_involution {β : Type u} {α : Type v} [add_comm_monoid β] {s : finset α} {f : α → β} (g : Π (a : α), a s → α) (h : ∀ (a : α) (ha : a s), f a + f (g a ha) = 0) (g_ne : ∀ (a : α) (ha : a s), f a 0g a ha a) (g_mem : ∀ (a : α) (ha : a s), g a ha s) (g_inv : ∀ (a : α) (ha : a s), g (g a ha) _ = a) :
∑ (x : α) in s, f x = 0
theorem finset.prod_comp {β : Type u} {α : Type v} {γ : Type w} {s : finset α} [comm_monoid β] [decidable_eq γ] (f : γ → β) (g : α → γ) :
∏ (a : α) in s, f (g a) = ∏ (b : γ) in finset.image g s, f b ^ (finset.filter (λ (a : α), g a = b) s).card

The product of the composition of functions f and g, is the product over b ∈ s.image g of f b to the power of the cardinality of the fibre of b. See also finset.prod_image.

theorem finset.sum_comp {β : Type u} {α : Type v} {γ : Type w} {s : finset α} [add_comm_monoid β] [decidable_eq γ] (f : γ → β) (g : α → γ) :
∑ (a : α) in s, f (g a) = ∑ (b : γ) in finset.image g s, (finset.filter (λ (a : α), g a = b) s).card f b

The sum of the composition of functions f and g, is the sum over b ∈ s.image g of f b times of the cardinality of the fibre of b. See also finset.sum_image.

theorem finset.sum_piecewise {β : Type u} {α : Type v} [add_comm_monoid β] [decidable_eq α] (s t : finset α) (f g : α → β) :
∑ (x : α) in s, t.piecewise f g x = ∑ (x : α) in s t, f x + ∑ (x : α) in s \ t, g x
theorem finset.prod_piecewise {β : Type u} {α : Type v} [comm_monoid β] [decidable_eq α] (s t : finset α) (f g : α → β) :
∏ (x : α) in s, t.piecewise f g x = (∏ (x : α) in s t, f x) * ∏ (x : α) in s \ t, g x
theorem finset.prod_inter_mul_prod_diff {β : Type u} {α : Type v} [comm_monoid β] [decidable_eq α] (s t : finset α) (f : α → β) :
(∏ (x : α) in s t, f x) * ∏ (x : α) in s \ t, f x = ∏ (x : α) in s, f x
theorem finset.sum_inter_add_sum_diff {β : Type u} {α : Type v} [add_comm_monoid β] [decidable_eq α] (s t : finset α) (f : α → β) :
∑ (x : α) in s t, f x + ∑ (x : α) in s \ t, f x = ∑ (x : α) in s, f x
theorem finset.prod_eq_mul_prod_diff_singleton {β : Type u} {α : Type v} [comm_monoid β] [decidable_eq α] {s : finset α} {i : α} (h : i s) (f : α → β) :
∏ (x : α) in s, f x = (f i) * ∏ (x : α) in s \ {i}, f x
theorem finset.sum_eq_add_sum_diff_singleton {β : Type u} {α : Type v} [add_comm_monoid β] [decidable_eq α] {s : finset α} {i : α} (h : i s) (f : α → β) :
∑ (x : α) in s, f x = f i + ∑ (x : α) in s \ {i}, f x
theorem finset.prod_eq_prod_diff_singleton_mul {β : Type u} {α : Type v} [comm_monoid β] [decidable_eq α] {s : finset α} {i : α} (h : i s) (f : α → β) :
∏ (x : α) in s, f x = (∏ (x : α) in s \ {i}, f x) * f i
theorem finset.sum_eq_sum_diff_singleton_add {β : Type u} {α : Type v} [add_comm_monoid β] [decidable_eq α] {s : finset α} {i : α} (h : i s) (f : α → β) :
∑ (x : α) in s, f x = ∑ (x : α) in s \ {i}, f x + f i
theorem fintype.prod_eq_mul_prod_compl {β : Type u} {α : Type v} [comm_monoid β] [decidable_eq α] [fintype α] (a : α) (f : α → β) :
∏ (i : α), f i = (f a) * ∏ (i : α) in {a}, f i
theorem fintype.sum_eq_add_sum_compl {β : Type u} {α : Type v} [add_comm_monoid β] [decidable_eq α] [fintype α] (a : α) (f : α → β) :
∑ (i : α), f i = f a + ∑ (i : α) in {a}, f i
theorem fintype.prod_eq_prod_compl_mul {β : Type u} {α : Type v} [comm_monoid β] [decidable_eq α] [fintype α] (a : α) (f : α → β) :
∏ (i : α), f i = (∏ (i : α) in {a}, f i) * f a
theorem fintype.sum_eq_sum_compl_add {β : Type u} {α : Type v} [add_comm_monoid β] [decidable_eq α] [fintype α] (a : α) (f : α → β) :
∑ (i : α), f i = ∑ (i : α) in {a}, f i + f a
theorem finset.dvd_prod_of_mem {β : Type u} {α : Type v} [comm_monoid β] (f : α → β) {a : α} {s : finset α} (ha : a s) :
f a ∏ (i : α) in s, f i
theorem finset.sum_partition {β : Type u} {α : Type v} {s : finset α} {f : α → β} [add_comm_monoid β] (R : setoid α) [decidable_rel setoid.r] :
∑ (x : α) in s, f x = ∑ (xbar : quotient R) in finset.image quotient.mk s, ∑ (y : α) in finset.filter (λ (y : α), y = xbar) s, f y

A sum can be partitioned into a sum of sums, each equivalent under a setoid.

theorem finset.prod_partition {β : Type u} {α : Type v} {s : finset α} {f : α → β} [comm_monoid β] (R : setoid α) [decidable_rel setoid.r] :
∏ (x : α) in s, f x = ∏ (xbar : quotient R) in finset.image quotient.mk s, ∏ (y : α) in finset.filter (λ (y : α), y = xbar) s, f y

A product can be partitioned into a product of products, each equivalent under a setoid.

theorem finset.prod_cancels_of_partition_cancels {β : Type u} {α : Type v} {s : finset α} {f : α → β} [comm_monoid β] (R : setoid α) [decidable_rel setoid.r] (h : ∀ (x : α), x s∏ (a : α) in finset.filter (λ (y : α), y x) s, f a = 1) :
∏ (x : α) in s, f x = 1

If we can partition a product into subsets that cancel out, then the whole product cancels.

theorem finset.sum_cancels_of_partition_cancels {β : Type u} {α : Type v} {s : finset α} {f : α → β} [add_comm_monoid β] (R : setoid α) [decidable_rel setoid.r] (h : ∀ (x : α), x s∑ (a : α) in finset.filter (λ (y : α), y x) s, f a = 0) :
∑ (x : α) in s, f x = 0

If we can partition a sum into subsets that cancel out, then the whole sum cancels.

theorem finset.prod_update_of_not_mem {β : Type u} {α : Type v} [comm_monoid β] [decidable_eq α] {s : finset α} {i : α} (h : i s) (f : α → β) (b : β) :
∏ (x : α) in s, function.update f i b x = ∏ (x : α) in s, f x
theorem finset.sum_update_of_not_mem {β : Type u} {α : Type v} [add_comm_monoid β] [decidable_eq α] {s : finset α} {i : α} (h : i s) (f : α → β) (b : β) :
∑ (x : α) in s, function.update f i b x = ∑ (x : α) in s, f x
theorem finset.prod_update_of_mem {β : Type u} {α : Type v} [comm_monoid β] [decidable_eq α] {s : finset α} {i : α} (h : i s) (f : α → β) (b : β) :
∏ (x : α) in s, function.update f i b x = b * ∏ (x : α) in s \ {i}, f x
theorem finset.sum_update_of_mem {β : Type u} {α : Type v} [add_comm_monoid β] [decidable_eq α] {s : finset α} {i : α} (h : i s) (f : α → β) (b : β) :
∑ (x : α) in s, function.update f i b x = b + ∑ (x : α) in s \ {i}, f x
theorem finset.eq_of_card_le_one_of_sum_eq {β : Type u} {α : Type v} [add_comm_monoid β] {s : finset α} (hc : s.card 1) {f : α → β} {b : β} (h : ∑ (x : α) in s, f x = b) (x : α) (H : x s) :
f x = b

If a sum of a finset of size at most 1 has a given value, so do the terms in that sum.

theorem finset.eq_of_card_le_one_of_prod_eq {β : Type u} {α : Type v} [comm_monoid β] {s : finset α} (hc : s.card 1) {f : α → β} {b : β} (h : ∏ (x : α) in s, f x = b) (x : α) (H : x s) :
f x = b

If a product of a finset of size at most 1 has a given value, so do the terms in that product.

theorem finset.add_sum_erase {β : Type u} {α : Type v} [add_comm_monoid β] [decidable_eq α] (s : finset α) (f : α → β) {a : α} (h : a s) :
f a + ∑ (x : α) in s.erase a, f x = ∑ (x : α) in s, f x

Taking a sum over s : finset α is the same as adding the value on a single element f a to the sum over s.erase a.

theorem finset.mul_prod_erase {β : Type u} {α : Type v} [comm_monoid β] [decidable_eq α] (s : finset α) (f : α → β) {a : α} (h : a s) :
(f a) * ∏ (x : α) in s.erase a, f x = ∏ (x : α) in s, f x

Taking a product over s : finset α is the same as multiplying the value on a single element f a by the product of s.erase a.

theorem finset.sum_erase_add {β : Type u} {α : Type v} [add_comm_monoid β] [decidable_eq α] (s : finset α) (f : α → β) {a : α} (h : a s) :
∑ (x : α) in s.erase a, f x + f a = ∑ (x : α) in s, f x

A variant of finset.add_sum_erase with the addition swapped.

theorem finset.prod_erase_mul {β : Type u} {α : Type v} [comm_monoid β] [decidable_eq α] (s : finset α) (f : α → β) {a : α} (h : a s) :
(∏ (x : α) in s.erase a, f x) * f a = ∏ (x : α) in s, f x

A variant of finset.mul_prod_erase with the multiplication swapped.

theorem finset.prod_erase {β : Type u} {α : Type v} [comm_monoid β] [decidable_eq α] (s : finset α) {f : α → β} {a : α} (h : f a = 1) :
∏ (x : α) in s.erase a, f x = ∏ (x : α) in s, f x

If a function applied at a point is 1, a product is unchanged by removing that point, if present, from a finset.

theorem finset.sum_erase {β : Type u} {α : Type v} [add_comm_monoid β] [decidable_eq α] (s : finset α) {f : α → β} {a : α} (h : f a = 0) :
∑ (x : α) in s.erase a, f x = ∑ (x : α) in s, f x

If a function applied at a point is 0, a sum is unchanged by removing that point, if present, from a finset.

theorem finset.eq_zero_of_sum_eq_zero {β : Type u} {α : Type v} [add_comm_monoid β] {s : finset α} {f : α → β} {a : α} (hp : ∑ (x : α) in s, f x = 0) (h1 : ∀ (x : α), x sx af x = 0) (x : α) (H : x s) :
f x = 0

If a sum is 0 and the function is 0 except possibly at one point, it is 0 everywhere on the finset.

theorem finset.eq_one_of_prod_eq_one {β : Type u} {α : Type v} [comm_monoid β] {s : finset α} {f : α → β} {a : α} (hp : ∏ (x : α) in s, f x = 1) (h1 : ∀ (x : α), x sx af x = 1) (x : α) (H : x s) :
f x = 1

If a product is 1 and the function is 1 except possibly at one point, it is 1 everywhere on the finset.

theorem finset.prod_pow_boole {β : Type u} {α : Type v} [comm_monoid β] [decidable_eq α] (s : finset α) (f : α → β) (a : α) :
∏ (x : α) in s, f x ^ ite (a = x) 1 0 = ite (a s) (f a) 1
theorem finset.prod_dvd_prod_of_dvd {β : Type u} {α : Type v} [comm_monoid β] {S : finset α} (g1 g2 : α → β) (h : ∀ (a : α), a Sg1 a g2 a) :
S.prod g1 S.prod g2
theorem finset.prod_dvd_prod_of_subset {ι : Type u_1} {M : Type u_2} [comm_monoid M] (s t : finset ι) (f : ι → M) (h : s t) :
∏ (i : ι) in s, f i ∏ (i : ι) in t, f i
theorem finset.prod_add_prod_eq {β : Type u} {α : Type v} [comm_semiring β] {s : finset α} {i : α} {f g h : α → β} (hi : i s) (h1 : g i + h i = f i) (h2 : ∀ (j : α), j sj ig j = f j) (h3 : ∀ (j : α), j sj ih j = f j) :
∏ (i : α) in s, g i + ∏ (i : α) in s, h i = ∏ (i : α) in s, f i

If f = g = h everywhere but at i, where f i = g i + h i, then the product of f over s is the sum of the products of g and h.

theorem finset.card_eq_sum_ones {α : Type v} (s : finset α) :
s.card = ∑ (_x : α) in s, 1
theorem finset.sum_const_nat {α : Type v} {s : finset α} {m : } {f : α → } (h₁ : ∀ (x : α), x sf x = m) :
∑ (x : α) in s, f x = (s.card) * m
@[simp]
theorem finset.sum_boole {β : Type u} {α : Type v} {s : finset α} {p : α → Prop} [non_assoc_semiring β] {hp : decidable_pred p} :
∑ (x : α) in s, ite (p x) 1 0 = ((finset.filter p s).card)
theorem finset.eq_sum_range_sub {β : Type u} [add_comm_group β] (f : → β) (n : ) :
f n = f 0 + ∑ (i : ) in finset.range n, (f (i + 1) - f i)
theorem finset.eq_sum_range_sub' {β : Type u} [add_comm_group β] (f : → β) (n : ) :
f n = ∑ (i : ) in finset.range (n + 1), ite (i = 0) (f 0) (f i - f (i - 1))
theorem commute.sum_right {β : Type u} {α : Type v} [non_unital_non_assoc_semiring β] (s : finset α) (f : α → β) (b : β) (h : ∀ (i : α), i scommute b (f i)) :
commute b (∑ (i : α) in s, f i)
theorem commute.sum_left {β : Type u} {α : Type v} [non_unital_non_assoc_semiring β] (s : finset α) (f : α → β) (b : β) (h : ∀ (i : α), i scommute (f i) b) :
commute (∑ (i : α) in s, f i) b
@[simp]
theorem finset.op_sum {β : Type u} {α : Type v} [add_comm_monoid β] {s : finset α} (f : α → β) :
mul_opposite.op (∑ (x : α) in s, f x) = ∑ (x : α) in s, mul_opposite.op (f x)

Moving to the opposite additive commutative monoid commutes with summing.

@[simp]
theorem finset.unop_sum {β : Type u} {α : Type v} [add_comm_monoid β] {s : finset α} (f : α → βᵐᵒᵖ) :
mul_opposite.unop (∑ (x : α) in s, f x) = ∑ (x : α) in s, mul_opposite.unop (f x)
@[simp]
theorem finset.sum_neg_distrib {β : Type u} {α : Type v} {s : finset α} {f : α → β} [add_comm_group β] :
∑ (x : α) in s, -f x = -∑ (x : α) in s, f x
@[simp]
theorem finset.prod_inv_distrib {β : Type u} {α : Type v} {s : finset α} {f : α → β} [comm_group β] :
∏ (x : α) in s, (f x)⁻¹ = (∏ (x : α) in s, f x)⁻¹
theorem finset.zsmul_sum {β : Type u} {α : Type v} [add_comm_group β] (f : α → β) (s : finset α) (n : ) :
n ∑ (a : α) in s, f a = ∑ (a : α) in s, n f a
theorem finset.prod_zpow {β : Type u} {α : Type v} [comm_group β] (f : α → β) (s : finset α) (n : ) :
(∏ (a : α) in s, f a) ^ n = ∏ (a : α) in s, f a ^ n
theorem finset.prod_sdiff_div_prod_sdiff {β : Type u} {α : Type v} {s₁ s₂ : finset α} {f : α → β} [comm_group β] [decidable_eq α] :
(∏ (x : α) in s₂ \ s₁, f x) / ∏ (x : α) in s₁ \ s₂, f x = (∏ (x : α) in s₂, f x) / ∏ (x : α) in s₁, f x
theorem finset.sum_sdiff_sub_sum_sdiff {β : Type u} {α : Type v} {s₁ s₂ : finset α} {f : α → β} [add_comm_group β] [decidable_eq α] :
∑ (x : α) in s₂ \ s₁, f x - ∑ (x : α) in s₁ \ s₂, f x = ∑ (x : α) in s₂, f x - ∑ (x : α) in s₁, f x
@[simp]
theorem finset.card_sigma {α : Type v} {σ : α → Type u_1} (s : finset α) (t : Π (a : α), finset (σ a)) :
(s.sigma t).card = ∑ (a : α) in s, (t a).card
theorem finset.card_bUnion {β : Type u} {α : Type v} [decidable_eq β] {s : finset α} {t : α → finset β} (h : ∀ (x : α), x s∀ (y : α), y sx ydisjoint (t x) (t y)) :
(s.bUnion t).card = ∑ (u : α) in s, (t u).card
theorem finset.card_bUnion_le {β : Type u} {α : Type v} [decidable_eq β] {s : finset α} {t : α → finset β} :
(s.bUnion t).card ∑ (a : α) in s, (t a).card
theorem finset.card_eq_sum_card_fiberwise {β : Type u} {α : Type v} [decidable_eq β] {f : α → β} {s : finset α} {t : finset β} (H : ∀ (x : α), x sf x t) :
s.card = ∑ (a : β) in t, (finset.filter (λ (x : α), f x = a) s).card
theorem finset.card_eq_sum_card_image {β : Type u} {α : Type v} [decidable_eq β] (f : α → β) (s : finset α) :
s.card = ∑ (a : β) in finset.image f s, (finset.filter (λ (x : α), f x = a) s).card
@[simp]
theorem finset.sum_sub_distrib {β : Type u} {α : Type v} {s : finset α} {f g : α → β} [add_comm_group β] :
∑ (x : α) in s, (f x - g x) = ∑ (x : α) in s, f x - ∑ (x : α) in s, g x
theorem finset.mem_sum {β : Type u} {α : Type v} {f : α → multiset β} (s : finset α) (b : β) :
b ∑ (x : α) in s, f x ∃ (a : α) (H : a s), b f a
theorem finset.prod_eq_zero {β : Type u} {α : Type v} {s : finset α} {a : α} {f : α → β} [comm_monoid_with_zero β] (ha : a s) (h : f a = 0) :
∏ (x : α) in s, f x = 0
theorem finset.prod_boole {β : Type u} {α : Type v} [comm_monoid_with_zero β] {s : finset α} {p : α → Prop} [decidable_pred p] :
∏ (i : α) in s, ite (p i) 1 0 = ite (∀ (i : α), i sp i) 1 0
theorem finset.prod_eq_zero_iff {β : Type u} {α : Type v} {s : finset α} {f : α → β} [comm_monoid_with_zero β] [nontrivial β] [no_zero_divisors β] :
∏ (x : α) in s, f x = 0 ∃ (a : α) (H : a s), f a = 0
theorem finset.prod_ne_zero_iff {β : Type u} {α : Type v} {s : finset α} {f : α → β} [comm_monoid_with_zero β] [nontrivial β] [no_zero_divisors β] :
∏ (x : α) in s, f x 0 ∀ (a : α), a sf a 0
@[simp]
theorem finset.prod_inv_distrib' {β : Type u} {α : Type v} {s : finset α} {f : α → β} [comm_group_with_zero β] :
∏ (x : α) in s, (f x)⁻¹ = (∏ (x : α) in s, f x)⁻¹
theorem finset.prod_unique_nonempty {α : Type u_1} {β : Type u_2} [comm_monoid β] [unique α] (s : finset α) (f : α → β) (h : s.nonempty) :
∏ (x : α) in s, f x = f default
theorem finset.sum_unique_nonempty {α : Type u_1} {β : Type u_2} [add_comm_monoid β] [unique α] (s : finset α) (f : α → β) (h : s.nonempty) :
∑ (x : α) in s, f x = f default
theorem fintype.sum_bijective {α : Type u_1} {β : Type u_2} {M : Type u_3} [fintype α] [fintype β] [add_comm_monoid M] (e : α → β) (he : function.bijective e) (f : α → M) (g : β → M) (h : ∀ (x : α), f x = g (e x)) :
∑ (x : α), f x = ∑ (x : β), g x

fintype.sum_equiv is a variant of finset.sum_bij that accepts function.bijective.

See function.bijective.sum_comp for a version without h.

theorem fintype.prod_bijective {α : Type u_1} {β : Type u_2} {M : Type u_3} [fintype α] [fintype β] [comm_monoid M] (e : α → β) (he : function.bijective e) (f : α → M) (g : β → M) (h : ∀ (x : α), f x = g (e x)) :
∏ (x : α), f x = ∏ (x : β), g x

fintype.prod_bijective is a variant of finset.prod_bij that accepts function.bijective.

See function.bijective.prod_comp for a version without h.

theorem fintype.prod_equiv {α : Type u_1} {β : Type u_2} {M : Type u_3} [fintype α] [fintype β] [comm_monoid M] (e : α β) (f : α → M) (g : β → M) (h : ∀ (x : α), f x = g (e x)) :
∏ (x : α), f x = ∏ (x : β), g x

fintype.prod_equiv is a specialization of finset.prod_bij that automatically fills in most arguments.

See equiv.prod_comp for a version without h.

theorem fintype.sum_equiv {α : Type u_1} {β : Type u_2} {M : Type u_3} [fintype α] [fintype β] [add_comm_monoid M] (e : α β) (f : α → M) (g : β → M) (h : ∀ (x : α), f x = g (e x)) :
∑ (x : α), f x = ∑ (x : β), g x

fintype.sum_equiv is a specialization of finset.sum_bij that automatically fills in most arguments.

See equiv.sum_comp for a version without h.

theorem fintype.sum_unique {α : Type u_1} {β : Type u_2} [add_comm_monoid β] [unique α] (f : α → β) :
∑ (x : α), f x = f default
theorem fintype.prod_unique {α : Type u_1} {β : Type u_2} [comm_monoid β] [unique α] (f : α → β) :
∏ (x : α), f x = f default
theorem fintype.prod_empty {α : Type u_1} {β : Type u_2} [comm_monoid β] [is_empty α] (f : α → β) :
∏ (x : α), f x = 1
theorem fintype.sum_empty {α : Type u_1} {β : Type u_2} [add_comm_monoid β] [is_empty α] (f : α → β) :
∑ (x : α), f x = 0
theorem fintype.prod_subsingleton {α : Type u_1} {β : Type u_2} [comm_monoid β] [subsingleton α] (f : α → β) (a : α) :
∏ (x : α), f x = f a
theorem fintype.sum_subsingleton {α : Type u_1} {β : Type u_2} [add_comm_monoid β] [subsingleton α] (f : α → β) (a : α) :
∑ (x : α), f x = f a
theorem fintype.prod_subtype_mul_prod_subtype {α : Type u_1} {β : Type u_2} [fintype α] [comm_monoid β] (p : α → Prop) (f : α → β) [decidable_pred p] :
(∏ (i : {x // p x}), f i) * ∏ (i : {x // ¬p x}), f i = ∏ (i : α), f i
theorem fintype.sum_subtype_add_sum_subtype {α : Type u_1} {β : Type u_2} [fintype α] [add_comm_monoid β] (p : α → Prop) (f : α → β) [decidable_pred p] :
∑ (i : {x // p x}), f i + ∑ (i : {x // ¬p x}), f i = ∑ (i : α), f i
theorem list.sum_to_finset {α : Type v} {M : Type u_1} [decidable_eq α] [add_comm_monoid M] (f : α → M) {l : list α} (hl : l.nodup) :
theorem list.prod_to_finset {α : Type v} {M : Type u_1} [decidable_eq α] [comm_monoid M] (f : α → M) {l : list α} (hl : l.nodup) :
@[simp]
theorem multiset.to_finset_sum_count_eq {α : Type v} [decidable_eq α] (s : multiset α) :
∑ (a : α) in s.to_finset, multiset.count a s = multiset.card s
theorem multiset.count_sum' {β : Type u} {α : Type v} [decidable_eq α] {s : finset β} {a : α} {f : β → multiset α} :
multiset.count a (∑ (x : β) in s, f x) = ∑ (x : β) in s, multiset.count a (f x)
@[simp]
theorem multiset.to_finset_sum_count_nsmul_eq {α : Type v} [decidable_eq α] (s : multiset α) :
∑ (a : α) in s.to_finset, multiset.count a s {a} = s
theorem multiset.exists_smul_of_dvd_count {α : Type v} [decidable_eq α] (s : multiset α) {k : } (h : ∀ (a : α), a sk multiset.count a s) :
∃ (u : multiset α), s = k u
theorem multiset.sum_sum {α : Type u_1} {ι : Type u_2} [add_comm_monoid α] (f : ι → multiset α) (s : finset ι) :
(∑ (x : ι) in s, f x).sum = ∑ (x : ι) in s, (f x).sum
theorem multiset.prod_sum {α : Type u_1} {ι : Type u_2} [comm_monoid α] (f : ι → multiset α) (s : finset ι) :
(∑ (x : ι) in s, f x).prod = ∏ (x : ι) in s, (f x).prod
@[simp, norm_cast]
theorem nat.cast_sum {β : Type u} {α : Type v} [add_comm_monoid β] [has_one β] (s : finset α) (f : α → ) :
∑ (x : α) in s, f x = ∑ (x : α) in s, (f x)
@[simp, norm_cast]
theorem int.cast_sum {β : Type u} {α : Type v} [add_comm_group β] [has_one β] (s : finset α) (f : α → ) :
∑ (x : α) in s, f x = ∑ (x : α) in s, (f x)
@[simp, norm_cast]
theorem nat.cast_prod {α : Type v} {R : Type u_1} [comm_semiring R] (f : α → ) (s : finset α) :
∏ (i : α) in s, f i = ∏ (i : α) in s, (f i)
@[simp, norm_cast]
theorem int.cast_prod {α : Type v} {R : Type u_1} [comm_ring R] (f : α → ) (s : finset α) :
∏ (i : α) in s, f i = ∏ (i : α) in s, (f i)
@[simp, norm_cast]
theorem units.coe_prod {α : Type v} {M : Type u_1} [comm_monoid M] (f : α → Mˣ) (s : finset α) :
∏ (i : α) in s, f i = ∏ (i : α) in s, (f i)
theorem nat_abs_sum_le {ι : Type u_1} (s : finset ι) (f : ι → ) :
(∑ (i : ι) in s, f i).nat_abs ∑ (i : ι) in s, (f i).nat_abs