Galois Extensions #
In this file we define Galois extensions as extensions which are both separable and normal.
Main definitions #
is_galois F E
whereE
is an extension ofF
fixed_field H
whereH : subgroup (E ≃ₐ[F] E)
fixing_subgroup K
whereK : intermediate_field F E
galois_correspondence
whereE/F
is finite dimensional and Galois
Main results #
intermediate_field.fixing_subgroup_fixed_field
: IfE/F
is finite dimensional (but not necessarily Galois) thenfixing_subgroup (fixed_field H) = H
intermediate_field.fixed_field_fixing_subgroup
: IfE/F
is finite dimensional and Galois thenfixed_field (fixing_subgroup K) = K
Together, these two results prove the Galois correspondence.
is_galois.tfae
: Equivalent characterizations of a Galois extension of finite degree
- to_is_separable : is_separable F E
- to_normal : normal F E
A field extension E/F is galois if it is both separable and normal. Note that in mathlib a separable extension of fields is by definition algebraic.
The intermediate field of fixed points fixed by a monoid action that commutes with the
F
-action on E
.
Equations
- fixed_points.intermediate_field M = {to_subalgebra := {carrier := mul_action.fixed_points M E mul_distrib_mul_action.to_mul_action, mul_mem' := _, one_mem' := _, add_mem' := _, zero_mem' := _, algebra_map_mem' := _}, neg_mem' := _, inv_mem' := _}
The subgroup fixing an intermediate_field
Equations
- K.fixing_subgroup = fixing_subgroup (E ≃ₐ[F] E) ↑K
The fixing_subgroup of K : intermediate_field F E
is isomorphic to E ≃ₐ[K] E
Equations
- K.fixing_subgroup_equiv = {to_fun := λ (ϕ : ↥(K.fixing_subgroup)), {to_fun := ↑ϕ.to_ring_equiv.to_fun, inv_fun := ↑ϕ.to_ring_equiv.inv_fun, left_inv := _, right_inv := _, map_mul' := _, map_add' := _, commutes' := _}, inv_fun := λ (ϕ : E ≃ₐ[↥K] E), ⟨alg_equiv.restrict_scalars F ϕ, _⟩, left_inv := _, right_inv := _, map_mul' := _}
Equations
The Galois correspondence from intermediate fields to subgroups
Equations
- is_galois.intermediate_field_equiv_subgroup = {to_equiv := {to_fun := intermediate_field.fixing_subgroup _inst_3, inv_fun := intermediate_field.fixed_field _inst_3, left_inv := _, right_inv := _}, map_rel_iff' := _}
The Galois correspondence as a galois_insertion
Equations
- is_galois.galois_insertion_intermediate_field_subgroup = {choice := λ (K : intermediate_field F E) (_x : (intermediate_field.fixed_field ∘ ⇑order_dual.to_dual) ((⇑order_dual.to_dual ∘ intermediate_field.fixing_subgroup) K) ≤ K), K.fixing_subgroup, gc := _, le_l_u := _, choice_eq := _}
The Galois correspondence as a galois_coinsertion
Equations
- is_galois.galois_coinsertion_intermediate_field_subgroup = {choice := λ (H : order_dual (subgroup (E ≃ₐ[F] E))) (_x : H ≤ (⇑order_dual.to_dual ∘ intermediate_field.fixing_subgroup) ((intermediate_field.fixed_field ∘ ⇑order_dual.to_dual) H)), intermediate_field.fixed_field H, gc := _, u_l_le := _, choice_eq := _}
Equivalent characterizations of a Galois extension of finite degree