def
tactic.interactive.apply_rel
{α : Sort u}
(R : α → α → Sort v)
{x y : α}
(x' y' : α)
(h : R x y)
(hx : x = x')
(hy : y = y') :
R x' y'
Equations
- tactic.interactive.apply_rel R x' y' h hx hy = _.mpr (_.mpr h)
Equations
- tactic.interactive.list.minimum_on f (x :: xs) = (list.foldl (λ (_x : β × list α), tactic.interactive.list.minimum_on._match_1 f _x) (f x, [x]) xs).snd
- tactic.interactive.list.minimum_on f list.nil = list.nil
- tactic.interactive.list.minimum_on._match_1 f (k, a) = λ (b : α), let k' : β := f b in ite (k < k') (k, a) (ite (k' < k) (k', [b]) (k, b :: a))
@[protected, instance]
- one : tactic.interactive.rep_arity
- exactly : ℕ → tactic.interactive.rep_arity
- many : tactic.interactive.rep_arity