mathlib documentation

tactic.monotonicity.interactive

meta inductive tactic.interactive.mono_function (elab : bool := tt) :
Type
meta def tactic.interactive.ac_mono_ctx'.traverse {m : Type → Type} [applicative m] {α β : Type} :
meta structure tactic.interactive.ac_mono_ctx' (rel : Type) :
Type

(prefix,left,right,suffix) ← match_assoc unif l r finds the longest prefix and suffix common to l and r and returns them along with the differences

meta def tactic.interactive.bin_op (f a b : expr) :
meta def tactic.interactive.mk_congr_args (fn : expr) (xs₀ xs₁ : list expr) (l r : expr) :
meta def tactic.interactive.match_rule (asms : list expr) (pat : expr) (r : name) :
meta def tactic.interactive.find_lemma (asms : list expr) (pat : expr) :
meta def tactic.interactive.match_chaining_rules (asms : list expr) (ls : list name) (x₀ x₁ : expr) :
def tactic.interactive.apply_rel {α : Sort u} (R : α → α → Sort v) {x y : α} (x' y' : α) (h : R x y) (hx : x = x') (hy : y = y') :
R x' y'
Equations
def tactic.interactive.list.minimum_on {α : Type u_1} {β : Type u_2} [linear_order β] (f : α → β) :
list αlist α
Equations
meta def tactic.interactive.best_match {β : Type} (xs : list expr) (tac : exprtactic β) :
  • mono applies a monotonicity rule.
  • mono* applies monotonicity rules repetitively.
  • mono with x ≤ y or mono with [0 ≤ x,0 ≤ y] creates an assertion for the listed propositions. Those help to select the right monotonicity rule.
  • mono left or mono right is useful when proving strict orderings: for x + y < w + z could be broken down into either
    • left: x ≤ w and y < z or
    • right: x < w and y ≤ z
  • mono using [rule1,rule2] calls simp [rule1,rule2] before applying mono.
  • The general syntax is mono '*'? ('with' hyp | 'with' [hyp1,hyp2])? ('using' [hyp1,hyp2])? mono_cfg?

To use it, first import tactic.monotonicity.

Here is an example of mono:

example (x y z k : )
  (h : 3  (4 : ))
  (h' : z  y) :
  (k + 3 + x) - y  (k + 4 + x) - z :=
begin
  mono, -- unfold `(-)`, apply add_le_add
  { -- ⊢ k + 3 + x ≤ k + 4 + x
    mono, -- apply add_le_add, refl
    -- ⊢ k + 3 ≤ k + 4
    mono },
  { -- ⊢ -y ≤ -z
    mono /- apply neg_le_neg -/ }
end

More succinctly, we can prove the same goal as:

example (x y z k : )
  (h : 3  (4 : ))
  (h' : z  y) :
  (k + 3 + x) - y  (k + 4 + x) - z :=
by mono*

transforms a goal of the form f x ≼ f y into x ≤ y using lemmas marked as monotonic.

Special care is taken when f is the repeated application of an associative operator and if the operator is commutative

(repeat_until_or_at_most n t u): repeat tactic t at most n times or until u succeeds

ac_mono reduces the f x ⊑ f y, for some relation and a monotonic function f to x ≺ y.

ac_mono* unwraps monotonic functions until it can't.

ac_mono^k, for some literal number k applies monotonicity k times.

ac_mono := h, with h a hypothesis, unwraps monotonic functions and uses h to solve the remaining goal. Can be combined with * or ^k: ac_mono* := h

ac_mono : p asserts p and uses it to discharge the goal result unwrapping a series of monotonic functions. Can be combined with * or ^k: ac_mono* : p

In the case where f is an associative or commutative operator, ac_mono will consider any possible permutation of its arguments and use the one the minimizes the difference between the left-hand side and the right-hand side.

To use it, first import tactic.monotonicity.

ac_mono can be used as follows:

example (x y z k m n : )
  (h₀ : z  0)
  (h₁ : x  y) :
  (m + x + n) * z + k  z * (y + n + m) + k :=
begin
  ac_mono,
  -- ⊢ (m + x + n) * z ≤ z * (y + n + m)
  ac_mono,
  -- ⊢ m + x + n ≤ y + n + m
  ac_mono,
end

As with mono*, ac_mono* solves the goal in one go and so does ac_mono* := h₁. The latter syntax becomes especially interesting in the following example:

example (x y z k m n : )
  (h₀ : z  0)
  (h₁ : m + x + n  y + n + m) :
  (m + x + n) * z + k  z * (y + n + m) + k :=
by ac_mono* := h₁.

By giving ac_mono the assumption h₁, we are asking ac_refl to stop earlier than it would normally would.