Powers of elements of groups with an adjoined zero element #
In this file we define integer power functions for groups with an adjoined zero element. This generalises the integer power function on a division ring.
@[simp]
theorem
ring.inverse_pow
{M : Type u_1}
[monoid_with_zero M]
(r : M)
(n : ℕ) :
ring.inverse r ^ n = ring.inverse (r ^ n)
theorem
semiconj_by.zpow_right₀
{G₀ : Type u_1}
[group_with_zero G₀]
{a x y : G₀}
(h : semiconj_by a x y)
(m : ℤ) :
semiconj_by a (x ^ m) (y ^ m)
theorem
commute.zpow_right₀
{G₀ : Type u_1}
[group_with_zero G₀]
{a b : G₀}
(h : commute a b)
(m : ℤ) :
theorem
commute.zpow_left₀
{G₀ : Type u_1}
[group_with_zero G₀]
{a b : G₀}
(h : commute a b)
(m : ℤ) :
theorem
commute.zpow_zpow₀
{G₀ : Type u_1}
[group_with_zero G₀]
{a b : G₀}
(h : commute a b)
(m n : ℤ) :
@[simp, norm_cast]
theorem
zpow_ne_zero_of_ne_zero
{G₀ : Type u_1}
[group_with_zero G₀]
{a : G₀}
(ha : a ≠ 0)
(z : ℤ) :
The n
-th power map (n
an integer) on a commutative group with zero, considered as a group
homomorphism.
theorem
monoid_with_zero_hom.map_zpow
{G₀ : Type u_1}
{G₀' : Type u_2}
[group_with_zero G₀]
[group_with_zero G₀']
(f : G₀ →*₀ G₀')
(x : G₀)
(n : ℤ) :
If a monoid homomorphism f
between two group_with_zero
s maps 0
to 0
, then it maps x^n
,
n : ℤ
, to (f x)^n
.