Commutators of Subgroups #
If G
is a group and H₁ H₂ : subgroup G
then the commutator ⁅H₁, H₂⁆ : subgroup G
is the subgroup of G
generated by the commutators h₁ * h₂ * h₁⁻¹ * h₂⁻¹
.
Main definitions #
⁅g₁, g₂⁆
: the commutator of the elementsg₁
andg₂
(defined bycommutator_element
elsewhere).⁅H₁, H₂⁆
: the commutator of the subgroupsH₁
andH₂
.
@[protected, instance]
The commutator of two subgroups H₁
and H₂
.
theorem
subgroup.map_commutator
{G : Type u_1}
{G' : Type u_2}
[group G]
[group G']
(H₁ H₂ : subgroup G)
(f : G →* G') :
subgroup.map f ⁅H₁,H₂⁆ = ⁅subgroup.map f H₁,subgroup.map f H₂⁆
theorem
subgroup.commutator_le_map_commutator
{G : Type u_1}
{G' : Type u_2}
[group G]
[group G']
{H₁ H₂ : subgroup G}
{f : G →* G'}
{K₁ K₂ : subgroup G'}
(h₁ : K₁ ≤ subgroup.map f H₁)
(h₂ : K₂ ≤ subgroup.map f H₂) :
@[protected, instance]
def
subgroup.commutator_characteristic
{G : Type u_1}
[group G]
(H₁ H₂ : subgroup G)
[h₁ : H₁.characteristic]
[h₂ : H₂.characteristic] :
⁅H₁,H₂⁆.characteristic
theorem
subgroup.commutator_pi_pi_le
{η : Type u_1}
{Gs : η → Type u_2}
[Π (i : η), group (Gs i)]
(H K : Π (i : η), subgroup (Gs i)) :
⁅subgroup.pi set.univ H,subgroup.pi set.univ K⁆ ≤ subgroup.pi set.univ (λ (i : η), ⁅H i,K i⁆)
The commutator of direct product is contained in the direct product of the commutators.
See commutator_pi_pi_of_fintype
for equality given fintype η
.
theorem
subgroup.commutator_pi_pi_of_fintype
{η : Type u_1}
[fintype η]
{Gs : η → Type u_2}
[Π (i : η), group (Gs i)]
(H K : Π (i : η), subgroup (Gs i)) :
⁅subgroup.pi set.univ H,subgroup.pi set.univ K⁆ = subgroup.pi set.univ (λ (i : η), ⁅H i,K i⁆)
The commutator of a finite direct product is contained in the direct product of the commutators.