mathlib documentation

data.polynomial.reverse

Reverse of a univariate polynomial #

The main definition is reverse. Applying reverse to a polynomial f : R[X] produces the polynomial with a reversed list of coefficients, equivalent to X^f.nat_degree * f(1/X).

The main result is that reverse (f * g) = reverse f * reverse g, provided the leading coefficients of f and g do not multiply to zero.

def polynomial.rev_at_fun (N i : ) :

If i ≤ N, then rev_at_fun N i returns N - i, otherwise it returns i. This is the map used by the embedding rev_at.

Equations

If i ≤ N, then rev_at N i returns N - i, otherwise it returns i. Essentially, this embedding is only used for i ≤ N. The advantage of rev_at N i over N - i is that rev_at is an involution.

Equations
@[simp]

We prefer to use the bundled rev_at over unbundled rev_at_fun.

@[simp]
theorem polynomial.rev_at_le {N i : } (H : i N) :
theorem polynomial.rev_at_add {N O n o : } (hn : n N) (ho : o O) :
@[simp]
noncomputable def polynomial.reflect {R : Type u_1} [semiring R] (N : ) :
R[X] → R[X]

reflect N f is the polynomial such that (reflect N f).coeff i = f.coeff (rev_at N i). In other words, the terms with exponent [0, ..., N] now have exponent [N, ..., 0].

In practice, reflect is only used when N is at least as large as the degree of f.

Eventually, it will be used with N exactly equal to the degree of f.

Equations
@[simp]
theorem polynomial.coeff_reflect {R : Type u_1} [semiring R] (N : ) (f : R[X]) (i : ) :
@[simp]
theorem polynomial.reflect_zero {R : Type u_1} [semiring R] {N : } :
@[simp]
theorem polynomial.reflect_eq_zero_iff {R : Type u_1} [semiring R] {N : } {f : R[X]} :
@[simp]
theorem polynomial.reflect_add {R : Type u_1} [semiring R] (f g : R[X]) (N : ) :
@[simp]
theorem polynomial.reflect_C_mul {R : Type u_1} [semiring R] (f : R[X]) (r : R) (N : ) :
@[simp]
theorem polynomial.reflect_C {R : Type u_1} [semiring R] (r : R) (N : ) :
theorem polynomial.reflect_mul_induction {R : Type u_1} [semiring R] (cf cg N O : ) (f g : R[X]) :
@[simp]
theorem polynomial.reflect_mul {R : Type u_1} [semiring R] (f g : R[X]) {F G : } (Ff : f.nat_degree F) (Gg : g.nat_degree G) :
theorem polynomial.eval₂_reflect_mul_pow {R : Type u_1} [semiring R] {S : Type u_2} [comm_semiring S] (i : R →+* S) (x : S) [invertible x] (N : ) (f : R[X]) (hf : f.nat_degree N) :
theorem polynomial.eval₂_reflect_eq_zero_iff {R : Type u_1} [semiring R] {S : Type u_2} [comm_semiring S] (i : R →+* S) (x : S) [invertible x] (N : ) (f : R[X]) (hf : f.nat_degree N) :
noncomputable def polynomial.reverse {R : Type u_1} [semiring R] (f : R[X]) :

The reverse of a polynomial f is the polynomial obtained by "reading f backwards". Even though this is not the actual definition, reverse f = f (1/X) * X ^ f.nat_degree.

Equations
theorem polynomial.coeff_reverse {R : Type u_1} [semiring R] (f : R[X]) (n : ) :
@[simp]
theorem polynomial.coeff_zero_reverse {R : Type u_1} [semiring R] (f : R[X]) :
@[simp]
theorem polynomial.reverse_zero {R : Type u_1} [semiring R] :
@[simp]
theorem polynomial.reverse_eq_zero {R : Type u_1} [semiring R] {f : R[X]} :
f.reverse = 0 f = 0
theorem polynomial.reverse_mul {R : Type u_1} [semiring R] {f g : R[X]} (fg : (f.leading_coeff) * g.leading_coeff 0) :
(f * g).reverse = (f.reverse) * g.reverse
@[simp]
theorem polynomial.reverse_mul_of_domain {R : Type u_1} [ring R] [no_zero_divisors R] (f g : R[X]) :
(f * g).reverse = (f.reverse) * g.reverse
@[simp]
theorem polynomial.coeff_one_reverse {R : Type u_1} [semiring R] (f : R[X]) :
theorem polynomial.eval₂_reverse_mul_pow {R : Type u_1} [semiring R] {S : Type u_2} [comm_semiring S] (i : R →+* S) (x : S) [invertible x] (f : R[X]) :
@[simp]
theorem polynomial.eval₂_reverse_eq_zero_iff {R : Type u_1} [semiring R] {S : Type u_2} [comm_semiring S] (i : R →+* S) (x : S) [invertible x] (f : R[X]) :
@[simp]
theorem polynomial.reflect_neg {R : Type u_1} [ring R] (f : R[X]) (N : ) :
@[simp]
theorem polynomial.reflect_sub {R : Type u_1} [ring R] (f g : R[X]) (N : ) :
@[simp]
theorem polynomial.reverse_neg {R : Type u_1} [ring R] (f : R[X]) :