norm_num
#
Evaluating arithmetic expressions including *
, +
, -
, ^
, ≤
.
Each lemma in this file is written the way it is to exactly match (with no defeq reduction allowed) the conclusion of some lemma generated by the proof procedure that uses it. That proof procedure should describe the shape of the generated lemma in its docstring.
theorem
norm_num.lt_bit1_bit0
{α : Type u_1}
[linear_ordered_semiring α]
(a b : α)
(h : a + 1 ≤ b) :
theorem
norm_num.le_bit1_bit0
{α : Type u_1}
[linear_ordered_semiring α]
(a b : α)
(h : a + 1 ≤ b) :
theorem
norm_num.sle_bit1_bit0
{α : Type u_1}
[linear_ordered_semiring α]
(a b : α)
(h : a + 1 ≤ b) :
theorem
norm_num.sle_bit1_bit1
{α : Type u_1}
[linear_ordered_semiring α]
(a b : α)
(h : a + 1 ≤ b) :
theorem
norm_num.clear_denom_lt
{α : Type u_1}
[linear_ordered_semiring α]
(a a' b b' d : α)
(h₀ : 0 < d)
(ha : a * d = a')
(hb : b * d = b')
(h : a' < b') :
a < b
theorem
norm_num.lt_neg_pos
{α : Type u_1}
[ordered_add_comm_group α]
(a b : α)
(ha : 0 < a)
(hb : 0 < b) :
theorem
norm_num.clear_denom_le
{α : Type u_1}
[linear_ordered_semiring α]
(a a' b b' d : α)
(h₀ : 0 < d)
(ha : a * d = a')
(hb : b * d = b')
(h : a' ≤ b') :
a ≤ b
theorem
norm_num.le_neg_pos
{α : Type u_1}
[ordered_add_comm_group α]
(a b : α)
(ha : 0 ≤ a)
(hb : 0 ≤ b) :
theorem
norm_num.div_eq
{α : Type u_1}
[division_ring α]
(a b b' c : α)
(hb : b⁻¹ = b')
(h : a * b' = c) :
#norm_num
command #
A user command to run norm_num
. Mostly copied from the #simp
command.