Minimal/maximal and bottom/top elements #
This file defines predicates for elements to be minimal/maximal or bottom/top and typeclasses saying that there are no such elements.
Predicates #
is_bot
: An element is bottom if all elements are greater than it.is_top
: An element is top if all elements are less than it.is_min
: An element is minimal if no element is strictly less than it.is_max
: An element is maximal if no element is strictly greater than it.
See also is_bot_iff_is_min
and is_top_iff_is_max
for the equivalences in a (co)directed order.
Typeclasses #
no_bot_order
: An order without bottom elements.no_top_order
: An order without top elements.no_min_order
: An order without minimal elements.no_max_order
: An order without maximal elements.
Order without bottom elements.
Order without top elements.
- exists_lt : ∀ (a : α), ∃ (b : α), b < a
Order without minimal elements. Sometimes called coinitial or dense.
- exists_gt : ∀ (a : α), ∃ (b : α), a < b
Order without maximal elements. Sometimes called cofinal.
Instances
- linear_ordered_comm_group.to_no_max_order
- linear_ordered_add_comm_group.to_no_max_order
- linear_ordered_semiring.to_no_max_order
- order_dual.no_max_order
- with_bot.no_max_order
- set.Ioo.no_max_order
- set.Ico.no_max_order
- set.Iio.no_max_order
- set.Ici.no_max_order
- cardinal.no_max_order
- sum.no_max_order
- sum.lex.no_max_order
- sum.lex.no_max_order_of_nonempty
- ordinal.no_max_order
- cardinal.α.no_max_order
- nonneg.no_max_order
a : α
is a bottom element of α
if it is less than or equal to any other element of α
.
This predicate is roughly an unbundled version of order_bot
, except that a preorder may have
several bottom elements. When α
is linear, this is useful to make a case disjunction on
no_min_order α
within a proof.
a : α
is a top element of α
if it is greater than or equal to any other element of α
.
This predicate is roughly an unbundled version of order_bot
, except that a preorder may have
several top elements. When α
is linear, this is useful to make a case disjunction on
no_max_order α
within a proof.
Alias of is_bot_to_dual_iff
.
Alias of is_top_to_dual_iff
.
Alias of is_min_to_dual_iff
.
Alias of is_max_to_dual_iff
.
Alias of is_bot_of_dual_iff
.
Alias of is_top_of_dual_iff
.
Alias of is_min_of_dual_iff
.
Alias of is_max_of_dual_iff
.
Alias of not_is_min_of_lt
.
Alias of not_is_max_of_lt
.