mathlib documentation

ideles / galois

The topological abelianization of the absolute Galois group. #

We define the topological abelianization of the absolute Galois group of a field K. In order to fo this, we needed to formalize the definition subgroup.connected_component_of_one and the lemmas topological_group.continuous_conj and subgroup.is_normal_topological_closure, which have already been integrated into mathlib.

Main definitions #

Tags #

number field, galois group, abelianization

def G_K (K : Type u_1) [field K] :
Type u_1

The absolute Galois group of G, defined as the Galois group of the field extension K^al/K, where K^al is an algebraic closure of K.

Equations
@[protected, instance]
noncomputable def G_K.group (K : Type u_1) [field K] :
Equations
@[protected, instance]
noncomputable def G_K.inhabited (K : Type u_1) [field K] :
Equations
@[protected, instance]
noncomputable def G_K.topological_space (K : Type u_1) [field K] :

G_K is a topological space with the Krull topology.

Equations
@[protected, instance]
def G_K.topological_group (K : Type u_1) [field K] :

G_K is a topological group with the Krull topology.

Topological abelianization

@[protected, instance]
def G_K_ab (K : Type u_1) [field K] :
Type u_1

The topological abelianization of G_K, that is, the quotient of G_K by the topological closure of its commutator subgroup.

Equations
@[protected, instance]
noncomputable def G_K_ab.group (K : Type u_1) [field K] :
Equations
@[protected, instance]
noncomputable def G_K_ab.inhabited (K : Type u_1) [field K] :
Equations
@[protected, instance]
noncomputable def G_K_ab.topological_space (K : Type u_1) [field K] :

G_K_ab is a topological space with the quotient topology.

Equations
@[protected, instance]
def G_K_ab.topological_group (K : Type u_1) [field K] :

G_K_ab is a topological group with the quotient topology.