Basics on bilinear maps #
This file provides basics on bilinear maps. The most general form considered are maps that are
semilinear in both arguments. They are of type M →ₛₗ[ρ₁₂] N →ₛₗ[σ₁₂] P
, where M
and N
are modules over R
and S
respectively, P
is a module over both R₂
and S₂
with
commuting actions, and ρ₁₂ : R →+* R₂
and σ₁₂ : S →+* S₂
.
Main declarations #
linear_map.mk₂
: a constructor for bilinear maps, taking an unbundled function together with proof witnesses of bilinearitylinear_map.flip
: turns a bilinear mapM × N → P
intoN × M → P
linear_map.lcomp
andlinear_map.llcomp
: composition of linear maps as a bilinear maplinear_map.compl₂
: composition of a bilinear mapM × N → P
with a linear mapQ → M
linear_map.compr₂
: composition of a bilinear mapM × N → P
with a linear mapQ → N
linear_map.lsmul
: scalar multiplication as a bilinear mapR × M → M
Tags #
bilinear
Create a bilinear map from a function that is semilinear in each component.
See mk₂'
and mk₂
for the linear case.
Create a bilinear map from a function that is linear in each component.
See mk₂
for the special case where both arguments come from modules over the same ring.
Equations
- linear_map.mk₂' R S f H1 H2 H3 H4 = linear_map.mk₂'ₛₗ (ring_hom.id R) (ring_hom.id S) f H1 H2 H3 H4
Given a linear map from M
to linear maps from N
to P
, i.e., a bilinear map from M × N
to
P
, change the order of variables and get a linear map from N
to linear maps from M
to P
.
Equations
- f.flip = linear_map.mk₂'ₛₗ σ₁₂ ρ₁₂ (λ (n : N) (m : M), ⇑(⇑f m) n) _ _ _ _
Restricting a bilinear map in the second entry
Equations
- f.dom_restrict₂ q = {to_fun := λ (m : M), (⇑f m).dom_restrict q, map_add' := _, map_smul' := _}
Restricting a bilinear map in both components
Equations
- f.dom_restrict₁₂ p q = (f.dom_restrict p).dom_restrict₂ q
Create a bilinear map from a function that is linear in each component.
This is a shorthand for mk₂'
for the common case when R = S
.
Equations
- linear_map.mk₂ R f H1 H2 H3 H4 = linear_map.mk₂' R R f H1 H2 H3 H4
Given a linear map from M
to linear maps from N
to P
, i.e., a bilinear map M → N → P
,
change the order of variables and get a linear map from N
to linear maps from M
to P
.
Equations
- linear_map.lflip R M N P = {to_fun := linear_map.flip σ₂₃, map_add' := _, map_smul' := _}
Composing a linear map M → N
and a linear map N → P
to form a linear map M → P
.
Equations
- linear_map.lcomp R Pₗ f = (linear_map.id.flip.comp f).flip
Composing a semilinear map M → N
and a semilinear map N → P
to form a semilinear map
M → P
is itself a linear map.
Equations
- linear_map.lcompₛₗ P σ₂₃ f = (linear_map.id.flip.comp f).flip
Composing a linear map M → N
and a linear map N → P
to form a linear map M → P
.
Equations
- linear_map.llcomp R M Nₗ Pₗ = {to_fun := linear_map.lcomp R Pₗ _inst_20, map_add' := _, map_smul' := _}.flip
Composing a linear map Q → N
and a bilinear map M → N → P
to
form a bilinear map M → Q → P
.
Equations
- f.compl₂ g = (linear_map.lcompₛₗ P σ₂₃ g).comp f
Composing linear maps Q → M
and Q' → N
with a bilinear map M → N → P
to
form a bilinear map Q → Q' → P
.
Composing a linear map P → Q
and a bilinear map M → N → P
to
form a bilinear map M → N → Q
.
Equations
- f.compr₂ g = (⇑(linear_map.llcomp R Nₗ Pₗ Qₗ) g).comp f
Scalar multiplication as a bilinear map R → M → M
.
Equations
- linear_map.lsmul R M = linear_map.mk₂ R has_scalar.smul _ _ _ _
Two bilinear maps are equal when they are equal on all basis vectors.
Write out B x y
as a sum over B (b i) (b j)
if b
is a basis.