Conjugacy of group elements #
See also mul_aut.conj and quandle.conj.
@[simp]
@[simp]
@[simp]
    
theorem
conj_injective
    {α : Type u}
    [group α]
    {x : α} :
function.injective (λ (g : α), (x * g) * x⁻¹)
The quotient type of conjugacy classes of a group.
Equations
- conj_classes α = quotient (is_conj.setoid α)
@[protected]
The canonical quotient map from a monoid α into the conj_classes of α
Equations
- conj_classes.mk a = ⟦a⟧
@[protected, instance]
    
    
theorem
conj_classes.mk_eq_mk_iff_is_conj
    {α : Type u}
    [monoid α]
    {a b : α} :
conj_classes.mk a = conj_classes.mk b ↔ is_conj a b
    
theorem
conj_classes.quot_mk_eq_mk
    {α : Type u}
    [monoid α]
    (a : α) :
quot.mk setoid.r a = conj_classes.mk a
    
theorem
conj_classes.forall_is_conj
    {α : Type u}
    [monoid α]
    {p : conj_classes α → Prop} :
(∀ (a : conj_classes α), p a) ↔ ∀ (a : α), p (conj_classes.mk a)
@[protected, instance]
    
    
theorem
conj_classes.exists_rep
    {α : Type u}
    [monoid α]
    (a : conj_classes α) :
∃ (a0 : α), conj_classes.mk a0 = a
    
def
conj_classes.map
    {α : Type u}
    {β : Type v}
    [monoid α]
    [monoid β]
    (f : α →* β) :
conj_classes α → conj_classes β
A monoid_hom maps conjugacy classes of one group to conjugacy classes of another.
Equations
- conj_classes.map f = quotient.lift (conj_classes.mk ∘ ⇑f) _
    
theorem
conj_classes.map_surjective
    {α : Type u}
    {β : Type v}
    [monoid α]
    [monoid β]
    {f : α →* β}
    (hf : function.surjective ⇑f) :
@[protected, instance]
    
def
conj_classes.fintype
    {α : Type u}
    [monoid α]
    [fintype α]
    [decidable_rel is_conj] :
    fintype (conj_classes α)
Equations
The bijection between a comm_group and its conj_classes.
Equations
- conj_classes.mk_equiv = {to_fun := conj_classes.mk (comm_monoid.to_monoid α), inv_fun := quotient.lift id conj_classes.mk_equiv._proof_1, left_inv := _, right_inv := _}
Given an element a, conjugates a is the set of conjugates.
Equations
- conjugates_of a = {b : α | is_conj a b}
    
theorem
is_conj_iff_conjugates_of_eq
    {α : Type u}
    [monoid α]
    {a b : α} :
is_conj a b ↔ conjugates_of a = conjugates_of b
Given a conjugacy class a, carrier a is the set it represents.
Equations
- conj_classes.carrier = quotient.lift conjugates_of conj_classes.carrier._proof_1
    
theorem
conj_classes.mem_carrier_mk
    {α : Type u}
    [monoid α]
    {a : α} :
a ∈ (conj_classes.mk a).carrier
    
theorem
conj_classes.mem_carrier_iff_mk_eq
    {α : Type u}
    [monoid α]
    {a : α}
    {b : conj_classes α} :
a ∈ b.carrier ↔ conj_classes.mk a = b
    
theorem
conj_classes.carrier_eq_preimage_mk
    {α : Type u}
    [monoid α]
    {a : conj_classes α} :
a.carrier = conj_classes.mk ⁻¹' {a}