Contractions #
Given modules $M, N$ over a commutative ring $R$, this file defines the natural linear maps: $M^* \otimes M \to R$, $M \otimes M^* \to R$, and $M^* \otimes N → Hom(M, N)$, as well as proving some basic properties of these maps.
Tags #
contraction, dual module, tensor product
The natural left-handed pairing between a module and its dual.
Equations
- contract_left R M = (tensor_product.uncurry R (module.dual R M) M R).to_fun linear_map.id
The natural right-handed pairing between a module and its dual.
Equations
- contract_right R M = (tensor_product.uncurry R M (module.dual R M) R).to_fun linear_map.id.flip
The natural map associating a linear map to the tensor product of two modules.
Equations
- dual_tensor_hom R M N = let M' : Type (max u_2 u_1) := module.dual R M in ⇑(tensor_product.uncurry R M' N (M →ₗ[R] N)) linear_map.smul_rightₗ
As a matrix, dual_tensor_hom
evaluated on a basis element of M* ⊗ N
is a matrix with a
single one and zeros elsewhere
If M
is free, the natural linear map $M^* ⊗ N → Hom(M, N)$ is an equivalence. This function
provides this equivalence in return for a basis of M
.
Equations
- dual_tensor_hom_equiv_of_basis b = linear_equiv.of_linear (dual_tensor_hom R M N) (∑ (i : ι), (⇑(tensor_product.mk R (module.dual R M) N) (⇑(b.dual_basis) i)).comp (⇑linear_map.applyₗ (⇑b i))) _ _
If M
is finite free, the natural map $M^* ⊗ N → Hom(M, N)$ is an
equivalence.