Univariate monomials #
Preparatory lemmas for degree_basic.
theorem
polynomial.monomial_one_eq_iff
{R : Type u}
[semiring R]
[nontrivial R]
{i j : ℕ} :
⇑(polynomial.monomial i) 1 = ⇑(polynomial.monomial j) 1 ↔ i = j
@[protected, instance]
theorem
polynomial.ring_hom_ext
{R : Type u}
[semiring R]
{S : Type u_1}
[semiring S]
{f g : R[X] →+* S}
(h₁ : ∀ (a : R), ⇑f (⇑polynomial.C a) = ⇑g (⇑polynomial.C a))
(h₂ : ⇑f polynomial.X = ⇑g polynomial.X) :
f = g
@[ext]
theorem
polynomial.ring_hom_ext'
{R : Type u}
[semiring R]
{S : Type u_1}
[semiring S]
{f g : R[X] →+* S}
(h₁ : f.comp polynomial.C = g.comp polynomial.C)
(h₂ : ⇑f polynomial.X = ⇑g polynomial.X) :
f = g