mathlib documentation

algebra.field.basic

Fields and division rings #

This file introduces fields and division rings (also known as skewfields) and proves some basic statements about them. For a more extensive theory of fields, see the field_theory folder.

Main definitions #

Implementation details #

By convention 0⁻¹ = 0 in a field or division ring. This is due to the fact that working with total functions has the advantage of not constantly having to check that x ≠ 0 when writing x⁻¹. With this convention in place, some statements like (a + b) * c⁻¹ = a * c⁻¹ + b * c⁻¹ still remain true, while others like the defining property a * a⁻¹ = 1 need the assumption a ≠ 0. If you are a beginner in using Lean and are confused by that, you can read more about why this convention is taken in Kevin Buzzard's blogpost

A division ring or field is an example of a group_with_zero. If you cannot find a division ring / field lemma that does not involve +, you can try looking for a group_with_zero lemma instead.

Tags #

field, division ring, skew field, skew-field, skewfield

@[instance]
def division_ring.to_nontrivial (K : Type u) [self : division_ring K] :
@[instance]
@[class]
structure division_ring (K : Type u) :
Type u

A division_ring is a ring with multiplicative inverses for nonzero elements

Instances
@[instance]
def division_ring.to_ring (K : Type u) [self : division_ring K] :
@[protected, instance]

Every division ring is a group_with_zero.

Equations
theorem one_div_neg_one_eq_neg_one {K : Type u} [division_ring K] :
1 / -1 = -1
theorem one_div_neg_eq_neg_one_div {K : Type u} [division_ring K] (a : K) :
1 / -a = -(1 / a)
theorem div_neg_eq_neg_div {K : Type u} [division_ring K] (a b : K) :
b / -a = -(b / a)
theorem neg_div {K : Type u} [division_ring K] (a b : K) :
-b / a = -(b / a)
theorem neg_div' {K : Type u} [division_ring K] (a b : K) :
-(b / a) = -b / a
theorem neg_div_neg_eq {K : Type u} [division_ring K] (a b : K) :
-a / -b = a / b
@[simp]
theorem div_neg_self {K : Type u} [division_ring K] {a : K} (h : a 0) :
a / -a = -1
@[simp]
theorem neg_div_self {K : Type u} [division_ring K] {a : K} (h : a 0) :
-a / a = -1
theorem div_add_div_same {K : Type u} [division_ring K] (a b c : K) :
a / c + b / c = (a + b) / c
theorem same_add_div {K : Type u} [division_ring K] {a b : K} (h : b 0) :
(b + a) / b = 1 + a / b
theorem one_add_div {K : Type u} [division_ring K] {a b : K} (h : b 0) :
1 + a / b = (b + a) / b
theorem div_add_same {K : Type u} [division_ring K] {a b : K} (h : b 0) :
(a + b) / b = a / b + 1
theorem div_add_one {K : Type u} [division_ring K] {a b : K} (h : b 0) :
a / b + 1 = (a + b) / b
theorem div_sub_div_same {K : Type u} [division_ring K] (a b c : K) :
a / c - b / c = (a - b) / c
theorem same_sub_div {K : Type u} [division_ring K] {a b : K} (h : b 0) :
(b - a) / b = 1 - a / b
theorem one_sub_div {K : Type u} [division_ring K] {a b : K} (h : b 0) :
1 - a / b = (b - a) / b
theorem div_sub_same {K : Type u} [division_ring K] {a b : K} (h : b 0) :
(a - b) / b = a / b - 1
theorem div_sub_one {K : Type u} [division_ring K] {a b : K} (h : b 0) :
a / b - 1 = (a - b) / b
theorem neg_inv {K : Type u} [division_ring K] {a : K} :
theorem add_div {K : Type u} [division_ring K] (a b c : K) :
(a + b) / c = a / c + b / c
theorem sub_div {K : Type u} [division_ring K] (a b c : K) :
(a - b) / c = a / c - b / c
theorem div_neg {K : Type u} [division_ring K] {b : K} (a : K) :
a / -b = -(a / b)
theorem inv_neg {K : Type u} [division_ring K] {a : K} :
theorem one_div_mul_add_mul_one_div_eq_one_div_add_one_div {K : Type u} [division_ring K] {a b : K} (ha : a 0) (hb : b 0) :
((1 / a) * (a + b)) * (1 / b) = 1 / a + 1 / b
theorem one_div_mul_sub_mul_one_div_eq_one_div_add_one_div {K : Type u} [division_ring K] {a b : K} (ha : a 0) (hb : b 0) :
((1 / a) * (b - a)) * (1 / b) = 1 / a - 1 / b
theorem add_div_eq_mul_add_div {K : Type u} [division_ring K] (a b : K) {c : K} (hc : c 0) :
a + b / c = (a * c + b) / c
@[protected, instance]
def division_ring.is_domain {K : Type u} [division_ring K] :
@[instance]
def field.to_div_inv_monoid (K : Type u) [self : field K] :
@[instance]
def field.to_comm_ring (K : Type u) [self : field K] :
@[instance]
def field.to_nontrivial (K : Type u) [self : field K] :
@[class]
structure field (K : Type u) :
Type u

A field is a comm_ring with multiplicative inverses for nonzero elements

Instances
@[protected, instance]
def field.to_division_ring {K : Type u} [field K] :
Equations
theorem div_add_div {K : Type u} [field K] (a : K) {b : K} (c : K) {d : K} (hb : b 0) (hd : d 0) :
a / b + c / d = (a * d + b * c) / b * d
theorem one_div_add_one_div {K : Type u} [field K] {a b : K} (ha : a 0) (hb : b 0) :
1 / a + 1 / b = (a + b) / a * b
theorem div_sub_div {K : Type u} [field K] (a : K) {b : K} (c : K) {d : K} (hb : b 0) (hd : d 0) :
a / b - c / d = (a * d - b * c) / b * d
theorem inv_add_inv {K : Type u} [field K] {a b : K} (ha : a 0) (hb : b 0) :
a⁻¹ + b⁻¹ = (a + b) / a * b
theorem inv_sub_inv {K : Type u} [field K] {a b : K} (ha : a 0) (hb : b 0) :
a⁻¹ - b⁻¹ = (b - a) / a * b
theorem add_div' {K : Type u} [field K] (a b c : K) (hc : c 0) :
b + a / c = (b * c + a) / c
theorem sub_div' {K : Type u} [field K] (a b c : K) (hc : c 0) :
b - a / c = (b * c - a) / c
theorem div_add' {K : Type u} [field K] (a b c : K) (hc : c 0) :
a / c + b = (a + b * c) / c
theorem div_sub' {K : Type u} [field K] (a b c : K) (hc : c 0) :
a / c - b = (a - c * b) / c
@[protected, instance]
def field.is_domain {K : Type u} [field K] :
structure is_field (R : Type u) [ring R] :
Prop
  • exists_pair_ne : ∃ (x y : R), x y
  • mul_comm : ∀ (x y : R), x * y = y * x
  • mul_inv_cancel : ∀ {a : R}, a 0(∃ (b : R), a * b = 1)

A predicate to express that a ring is a field.

This is mainly useful because such a predicate does not contain data, and can therefore be easily transported along ring isomorphisms. Additionaly, this is useful when trying to prove that a particular ring structure extends to a field.

theorem field.to_is_field (R : Type u) [field R] :

Transferring from field to is_field

@[simp]
theorem is_field.nontrivial {R : Type u} [ring R] (h : is_field R) :
@[simp]
theorem not_is_field_of_subsingleton (R : Type u) [ring R] [subsingleton R] :
noncomputable def is_field.to_field {R : Type u} [ring R] (h : is_field R) :

Transferring from is_field to field

Equations
theorem uniq_inv_of_is_field (R : Type u) [ring R] (hf : is_field R) (x : R) :
x 0(∃! (y : R), x * y = 1)

For each field, and for each nonzero element of said field, there is a unique inverse. Since is_field doesn't remember the data of an inv function and as such, a lemma that there is a unique inverse could be useful.

@[simp]
theorem ring_hom.map_units_inv {K : Type u} {R : Type u_1} [semiring R] [division_ring K] (f : R →+* K) (u : Rˣ) :
theorem ring_hom.map_ne_zero {K : Type u} {R : Type u_1} [division_ring K] [semiring R] [nontrivial R] (f : K →+* R) {x : K} :
f x 0 x 0
@[simp]
theorem ring_hom.map_eq_zero {K : Type u} {R : Type u_1} [division_ring K] [semiring R] [nontrivial R] (f : K →+* R) {x : K} :
f x = 0 x = 0
theorem ring_hom.map_inv {K : Type u} {K' : Type u_2} [division_ring K] [division_ring K'] (g : K →+* K') (x : K) :
theorem ring_hom.map_div {K : Type u} {K' : Type u_2} [division_ring K] [division_ring K'] (g : K →+* K') (x y : K) :
g (x / y) = g x / g y
@[protected]
theorem ring_hom.injective {K : Type u} {R : Type u_1} [division_ring K] [semiring R] [nontrivial R] (f : K →+* R) :
@[protected]
def function.injective.division_ring {K : Type u} [division_ring K] {K' : Type u_1} [has_zero K'] [has_mul K'] [has_add K'] [has_neg K'] [has_sub K'] [has_one K'] [has_inv K'] [has_div K'] [has_scalar K'] [has_scalar K'] [has_pow K' ] [has_pow K' ] (f : K' → K) (hf : function.injective f) (zero : f 0 = 0) (one : f 1 = 1) (add : ∀ (x y : K'), f (x + y) = f x + f y) (mul : ∀ (x y : K'), f (x * y) = (f x) * f y) (neg : ∀ (x : K'), f (-x) = -f x) (sub : ∀ (x y : K'), f (x - y) = f x - f y) (inv : ∀ (x : K'), f x⁻¹ = (f x)⁻¹) (div : ∀ (x y : K'), f (x / y) = f x / f y) (nsmul : ∀ (x : K') (n : ), f (n x) = n f x) (zsmul : ∀ (x : K') (n : ), f (n x) = n f x) (npow : ∀ (x : K') (n : ), f (x ^ n) = f x ^ n) (zpow : ∀ (x : K') (n : ), f (x ^ n) = f x ^ n) :

Pullback a division_ring along an injective function. See note [reducible non-instances].

Equations
@[protected]
def function.injective.field {K : Type u} [field K] {K' : Type u_1} [has_zero K'] [has_mul K'] [has_add K'] [has_neg K'] [has_sub K'] [has_one K'] [has_inv K'] [has_div K'] [has_scalar K'] [has_scalar K'] [has_pow K' ] [has_pow K' ] (f : K' → K) (hf : function.injective f) (zero : f 0 = 0) (one : f 1 = 1) (add : ∀ (x y : K'), f (x + y) = f x + f y) (mul : ∀ (x y : K'), f (x * y) = (f x) * f y) (neg : ∀ (x : K'), f (-x) = -f x) (sub : ∀ (x y : K'), f (x - y) = f x - f y) (inv : ∀ (x : K'), f x⁻¹ = (f x)⁻¹) (div : ∀ (x y : K'), f (x / y) = f x / f y) (nsmul : ∀ (x : K') (n : ), f (n x) = n f x) (zsmul : ∀ (x : K') (n : ), f (n x) = n f x) (npow : ∀ (x : K') (n : ), f (x ^ n) = f x ^ n) (zpow : ∀ (x : K') (n : ), f (x ^ n) = f x ^ n) :

Pullback a field along an injective function. See note [reducible non-instances].

Equations