Cosets #
This file develops the basic theory of left and right cosets.
Main definitions #
left_coset a s
: the left coseta * s
for an elementa : α
and a subsets ⊆ α
, for anadd_group
this isleft_add_coset a s
.right_coset s a
: the right cosets * a
for an elementa : α
and a subsets ⊆ α
, for anadd_group
this isright_add_coset s a
.quotient_group.quotient s
: the quotient type representing the left cosets with respect to a subgroups
, for anadd_group
this isquotient_add_group.quotient s
.quotient_group.mk
: the canonical map fromα
toα/s
for a subgroups
ofα
, for anadd_group
this isquotient_add_group.mk
.subgroup.left_coset_equiv_subgroup
: the natural bijection between a left coset and the subgroup, for anadd_group
this isadd_subgroup.left_coset_equiv_add_subgroup
.
Notation #
-
a *l s
: forleft_coset a s
. -
a +l s
: forleft_add_coset a s
. -
s *r a
: forright_coset s a
. -
s +r a
: forright_add_coset s a
. -
G ⧸ H
is the quotient of the (additive) groupG
by the (additive) subgroupH
TODO #
Add to_additive
to preimage_mk_equiv_subgroup_times_set
.
Equality of two left cosets a * s
and b * s
.
Equations
- left_coset_equivalence s a b = (a *l s = b *l s)
Equality of two left cosets a + s
and b + s
.
Equations
- left_add_coset_equivalence s a b = (a +l s = b +l s)
Equality of two right cosets s * a
and s * b
.
Equations
- right_coset_equivalence s a b = (s *r a = s *r b)
Equality of two right cosets s + a
and s + b
.
Equations
- right_add_coset_equivalence s a b = (s +r a = s +r b)
The equivalence relation corresponding to the partition of a group by left cosets of a subgroup.
Equations
- quotient_group.left_rel_decidable s = λ (x y : α), _inst_2 (x⁻¹ * y)
Equations
- quotient_add_group.left_rel_decidable s = λ (x y : α), _inst_2 (-x + y)
α ⧸ s
is the quotient type representing the left cosets of s
. If s
is a
normal subgroup, α ⧸ s
is a group
Equations
α ⧸ s
is the quotient type representing the left cosets of s
.
If s
is a normal subgroup, α ⧸ s
is a group
Equations
- quotient_group.subgroup.has_quotient = {quotient' := λ (s : subgroup α), quotient (quotient_group.left_rel s)}
The equivalence relation corresponding to the partition of a group by right cosets of a subgroup.
Equations
- quotient_group.right_rel_decidable s = λ (x y : α), _inst_2 (y * x⁻¹)
Equations
- quotient_add_group.right_rel_decidable s = λ (x y : α), _inst_2 (y + -x)
Right cosets are in bijection with left cosets.
Equations
- quotient_group.quotient_right_rel_equiv_quotient_left_rel s = {to_fun := quotient.map' (λ (g : α), g⁻¹) _, inv_fun := quotient.map' (λ (g : α), g⁻¹) _, left_inv := _, right_inv := _}
Right cosets are in bijection with left cosets.
Equations
- quotient_add_group.quotient_right_rel_equiv_quotient_left_rel s = {to_fun := quotient.map' (λ (g : α), -g) _, inv_fun := quotient.map' (λ (g : α), -g) _, left_inv := _, right_inv := _}
Equations
Equations
The canonical map from an add_group
α
to the quotient α ⧸ s
.
The canonical map from a group α
to the quotient α ⧸ s
.
Equations
Equations
Equations
The natural bijection between a left coset g * s
and s
.
The natural bijection between the cosets g + s
and s
.
The natural bijection between a right coset s * g
and s
.
The natural bijection between the cosets s + g
and s
.
A (non-canonical) bijection between a group α
and the product (α/s) × s
Equations
- subgroup.group_equiv_quotient_times_subgroup = (((equiv.sigma_preimage_equiv quotient_group.mk).symm.trans (equiv.sigma_congr_right (λ (L : α ⧸ s), _.mpr (id (_.mpr (equiv.refl {x // quotient.mk' x = L})))))).trans (equiv.sigma_congr_right (λ (L : α ⧸ s), subgroup.left_coset_equiv_subgroup (quotient.out' L)))).trans (equiv.sigma_equiv_prod (α ⧸ s) ↥s)
A (non-canonical) bijection between an add_group α
and the product (α/s) × s
Equations
- add_subgroup.add_group_equiv_quotient_times_add_subgroup = (((equiv.sigma_preimage_equiv quotient_add_group.mk).symm.trans (equiv.sigma_congr_right (λ (L : α ⧸ s), _.mpr (id (_.mpr (equiv.refl {x // quotient.mk' x = L})))))).trans (equiv.sigma_congr_right (λ (L : α ⧸ s), add_subgroup.left_coset_equiv_add_subgroup (quotient.out' L)))).trans (equiv.sigma_equiv_prod (α ⧸ s) ↥s)
If H ≤ K
, then G/H ≃ G/K × K/H
constructively, using the provided right inverse
of the quotient map G → G/K
. The classical version is quotient_equiv_prod_of_le
.
Equations
- subgroup.quotient_equiv_prod_of_le' h_le f hf = {to_fun := λ (a : α ⧸ s), (quotient.map' id _ a, quotient.map' (λ (g : α), ⟨(f (quotient.mk' g))⁻¹ * g, _⟩) _ a), inv_fun := λ (a : (α ⧸ t) × ↥t ⧸ s.subgroup_of t), quotient.map' (λ (b : ↥t), (f a.fst) * ↑b) _ a.snd, left_inv := _, right_inv := _}
If H ≤ K
, then G/H ≃ G/K × K/H
constructively, using the provided right inverse
of the quotient map G → G/K
. The classical version is quotient_equiv_prod_of_le
.
Equations
- add_subgroup.quotient_equiv_sum_of_le' h_le f hf = {to_fun := λ (a : α ⧸ s), (quotient.map' id _ a, quotient.map' (λ (g : α), ⟨-f (quotient.mk' g) + g, _⟩) _ a), inv_fun := λ (a : (α ⧸ t) × ↥t ⧸ s.add_subgroup_of t), quotient.map' (λ (b : ↥t), f a.fst + ↑b) _ a.snd, left_inv := _, right_inv := _}
If H ≤ K
, then G/H ≃ G/K × K/H
nonconstructively.
The constructive version is quotient_equiv_prod_of_le'
.
Equations
- add_subgroup.quotient_equiv_sum_of_le h_le = add_subgroup.quotient_equiv_sum_of_le' h_le quotient.out' add_subgroup.quotient_equiv_sum_of_le._proof_1
If H ≤ K
, then G/H ≃ G/K × K/H
nonconstructively.
The constructive version is quotient_equiv_prod_of_le'
.
Equations
- subgroup.quotient_equiv_prod_of_le h_le = subgroup.quotient_equiv_prod_of_le' h_le quotient.out' subgroup.quotient_equiv_prod_of_le._proof_1
If K ≤ L
, then there is an embedding
K ⧸ (H.add_subgroup_of K) ↪ L ⧸ (H.add_subgroup_of L)
.
Equations
- H.quotient_add_subgroup_of_embedding_of_le h = {to_fun := quotient.map' (set.inclusion h) _, inj' := _}
If K ≤ L
, then there is an embedding K ⧸ (H.subgroup_of K) ↪ L ⧸ (H.subgroup_of L)
.
Equations
- H.quotient_subgroup_of_embedding_of_le h = {to_fun := quotient.map' (set.inclusion h) _, inj' := _}
If s
is a subgroup of the group α
, and t
is a subset of α/s
, then
there is a (typically non-canonical) bijection between the preimage of t
in
α
and the product s × t
.
Equations
- quotient_group.preimage_mk_equiv_subgroup_times_set s t = have h : ∀ {x : α ⧸ s} {a : α}, x ∈ t → a ∈ s → quotient.mk' ((quotient.out' x) * a) = quotient.mk' (quotient.out' x), from _, {to_fun := λ (_x : ↥(quotient_group.mk ⁻¹' t)), quotient_group.preimage_mk_equiv_subgroup_times_set._match_1 s t _x, inv_fun := λ (_x : ↥s × ↥t), quotient_group.preimage_mk_equiv_subgroup_times_set._match_2 s t h _x, left_inv := _, right_inv := _}
- quotient_group.preimage_mk_equiv_subgroup_times_set._match_1 s t ⟨a, ha⟩ = (⟨((quotient.mk' a).out')⁻¹ * a, _⟩, ⟨quotient.mk' a, ha⟩)
- quotient_group.preimage_mk_equiv_subgroup_times_set._match_2 s t h (⟨a, ha⟩, ⟨x, hx⟩) = ⟨(quotient.out' x) * a, _⟩