Basic operations on the integers #
This file contains:
- instances on
ℤ
. The stronger one isint.linear_ordered_comm_ring
. - some basic lemmas about integers
Recursors #
int.rec
: Sign disjunction. Something is true/defined onℤ
if it's true/defined for nonnegative and for negative values.int.bit_cases_on
: Parity disjunction. Something is true/defined onℤ
if it's true/defined for even and for odd values.int.induction_on
: Simple growing induction on positive numbers, plus simple decreasing induction on negative numbers. Note that this recursor is currently onlyProp
-valued.int.induction_on'
: Simple growing induction for numbers greater thanb
, plus simple decreasing induction on numbers less thanb
.
@[protected, instance]
Equations
@[protected, instance]
Equations
- int.comm_ring = {add := int.add, add_assoc := int.add_assoc, zero := int.zero, zero_add := int.zero_add, add_zero := int.add_zero, nsmul := ring.nsmul._default int.zero int.add int.zero_add int.add_zero, nsmul_zero' := int.comm_ring._proof_1, nsmul_succ' := int.comm_ring._proof_2, neg := int.neg, sub := int.sub, sub_eq_add_neg := int.comm_ring._proof_3, zsmul := has_mul.mul int.has_mul, zsmul_zero' := int.zero_mul, zsmul_succ' := int.comm_ring._proof_4, zsmul_neg' := int.comm_ring._proof_5, add_left_neg := int.add_left_neg, add_comm := int.add_comm, mul := int.mul, mul_assoc := int.mul_assoc, one := int.one, one_mul := int.one_mul, mul_one := int.mul_one, npow := ring.npow._default int.one int.mul int.one_mul int.mul_one, npow_zero' := int.comm_ring._proof_6, npow_succ' := int.comm_ring._proof_7, left_distrib := int.distrib_left, right_distrib := int.distrib_right, mul_comm := int.mul_comm}
Extra instances to short-circuit type class resolution #
These also prevent non-computable instances like int.normed_comm_ring
being used to construct
these instances non-computably.
@[protected, instance]
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
@[protected, instance]
Equations
- int.linear_ordered_comm_ring = {add := comm_ring.add int.comm_ring, add_assoc := _, zero := comm_ring.zero int.comm_ring, zero_add := _, add_zero := _, nsmul := comm_ring.nsmul int.comm_ring, nsmul_zero' := _, nsmul_succ' := _, neg := comm_ring.neg int.comm_ring, sub := comm_ring.sub int.comm_ring, sub_eq_add_neg := _, zsmul := comm_ring.zsmul int.comm_ring, zsmul_zero' := _, zsmul_succ' := _, zsmul_neg' := _, add_left_neg := _, add_comm := _, mul := comm_ring.mul int.comm_ring, mul_assoc := _, one := comm_ring.one int.comm_ring, one_mul := _, mul_one := _, npow := comm_ring.npow int.comm_ring, npow_zero' := _, npow_succ' := _, left_distrib := _, right_distrib := _, le := linear_order.le int.linear_order, lt := linear_order.lt int.linear_order, le_refl := _, le_trans := _, lt_iff_le_not_le := _, le_antisymm := _, add_le_add_left := int.add_le_add_left, zero_le_one := int.linear_ordered_comm_ring._proof_1, mul_pos := int.mul_pos, le_total := _, decidable_le := linear_order.decidable_le int.linear_order, decidable_eq := linear_order.decidable_eq int.linear_order, decidable_lt := linear_order.decidable_lt int.linear_order, max := max int.linear_order, max_def := _, min := min int.linear_order, min_def := _, exists_pair_ne := _, mul_comm := _}
@[protected, instance]
succ and pred #
nat abs #
/
#
mod #
properties of /
and %
#
dvd #
@[protected, instance]
Equations
- int.decidable_dvd = λ (a n : ℤ), decidable_of_decidable_of_iff (int.decidable_eq (n % a) 0) _
/
and ordering #
theorem
int.of_nat_add_neg_succ_of_nat_of_ge
{m n : ℕ}
(h : n.succ ≤ m) :
int.of_nat m + -[1+ n] = int.of_nat (m - n.succ)
to_nat #
units #
bitwise ops #
@[simp]
@[simp]
theorem
int.bitwise_bit
(f : bool → bool → bool)
(a : bool)
(m : ℤ)
(b : bool)
(n : ℤ) :
int.bitwise f (int.bit a m) (int.bit b n) = int.bit (f a b) (int.bitwise f m n)