Ring automorphisms #
This file defines the automorphism group structure on ring_aut R := ring_equiv R R
.
Implementation notes #
The definition of multiplication in the automorphism group agrees with function composition,
multiplication in equiv.perm
, and multiplication in category_theory.End
, but not with
category_theory.comp
.
This file is kept separate from data/equiv/ring
so that group_theory.perm
is free to use
equivalences (and other files that use them) before the group structure is defined.
Tags #
ring_aut
The group operation on automorphisms of a ring is defined by
λ g h, ring_equiv.trans h g
.
This means that multiplication agrees with composition, (g*h)(x) = g (h x)
.
Equations
- ring_aut.group R = {mul := λ (g h : R ≃+* R), h.trans g, mul_assoc := _, one := ring_equiv.refl R _inst_2, one_mul := _, mul_one := _, npow := npow_rec {mul := λ (g h : R ≃+* R), h.trans g}, npow_zero' := _, npow_succ' := _, inv := ring_equiv.symm _inst_2, div := λ (a b : R ≃+* R), a * b.symm, div_eq_mul_inv := _, zpow := zpow_rec {inv := ring_equiv.symm _inst_2}, zpow_zero' := _, zpow_succ' := _, zpow_neg' := _, mul_left_inv := _}
Equations
- ring_aut.inhabited R = {default := 1}
Monoid homomorphism from ring automorphisms to additive automorphisms.
Equations
- ring_aut.to_add_aut R = {to_fun := ring_equiv.to_add_equiv _inst_2, map_one' := _, map_mul' := _}
Monoid homomorphism from ring automorphisms to multiplicative automorphisms.
Equations
- ring_aut.to_mul_aut R = {to_fun := ring_equiv.to_mul_equiv _inst_2, map_one' := _, map_mul' := _}
Monoid homomorphism from ring automorphisms to permutations.
Equations
- ring_aut.to_perm R = {to_fun := ring_equiv.to_equiv _inst_2, map_one' := _, map_mul' := _}