max
and min
#
This file proves basic properties about maxima and minima on a linear_order
.
Tags #
min, max
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[protected, instance]
An instance asserting that max a a = a
@[protected, instance]
An instance asserting that min a a = a
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
@[simp]
theorem
monotone_on.map_max
{α : Type u}
{β : Type v}
[linear_order α]
[linear_order β]
{f : α → β}
{s : set α}
{a b : α}
(hf : monotone_on f s)
(ha : a ∈ s)
(hb : b ∈ s) :
theorem
monotone_on.map_min
{α : Type u}
{β : Type v}
[linear_order α]
[linear_order β]
{f : α → β}
{s : set α}
{a b : α}
(hf : monotone_on f s)
(ha : a ∈ s)
(hb : b ∈ s) :
theorem
antitone_on.map_max
{α : Type u}
{β : Type v}
[linear_order α]
[linear_order β]
{f : α → β}
{s : set α}
{a b : α}
(hf : antitone_on f s)
(ha : a ∈ s)
(hb : b ∈ s) :
theorem
antitone_on.map_min
{α : Type u}
{β : Type v}
[linear_order α]
[linear_order β]
{f : α → β}
{s : set α}
{a b : α}
(hf : antitone_on f s)
(ha : a ∈ s)
(hb : b ∈ s) :
theorem
monotone.map_max
{α : Type u}
{β : Type v}
[linear_order α]
[linear_order β]
{f : α → β}
{a b : α}
(hf : monotone f) :
theorem
monotone.map_min
{α : Type u}
{β : Type v}
[linear_order α]
[linear_order β]
{f : α → β}
{a b : α}
(hf : monotone f) :
theorem
antitone.map_max
{α : Type u}
{β : Type v}
[linear_order α]
[linear_order β]
{f : α → β}
{a b : α}
(hf : antitone f) :
theorem
antitone.map_min
{α : Type u}
{β : Type v}
[linear_order α]
[linear_order β]
{f : α → β}
{a b : α}
(hf : antitone f) :
theorem
min_rec'
{α : Type u}
[linear_order α]
(p : α → Prop)
{x y : α}
(hx : p x)
(hy : p y) :
p (min x y)
theorem
max_rec'
{α : Type u}
[linear_order α]
(p : α → Prop)
{x y : α}
(hx : p x)
(hy : p y) :
p (max x y)