multiset.range n
gives {0, 1, ..., n-1}
as a multiset. #
range n
is the multiset lifted from the list range n
,
that is, the set {0, 1, ..., n-1}
.
Equations
- multiset.range n = ↑(list.range n)
theorem
multiset.range_add
(a b : ℕ) :
multiset.range (a + b) = multiset.range a + multiset.map (λ (x : ℕ), a + x) (multiset.range b)
theorem
multiset.range_disjoint_map_add
(a : ℕ)
(m : multiset ℕ) :
(multiset.range a).disjoint (multiset.map (λ (x : ℕ), a + x) m)
theorem
multiset.range_add_eq_union
(a b : ℕ) :
multiset.range (a + b) = multiset.range a ∪ multiset.map (λ (x : ℕ), a + x) (multiset.range b)