mathlib documentation

ideles / adeles_number_field

The ring of adèles of a number field #

We define the ring of finite adèles and the ring of adèles of a number field, both of which are topological commutative rings.

Main definitions #

Main results #

References #

Tags #

adèle ring, number field

The adèle ring of a number field #

We define the (finite) adèle ring of a number field K, with its topological ring structure.

def number_field.A_K_f (K : Type) [field K] [number_field K] :
Type

The finite adèle ring of K.

Equations
def number_field.A_K (K : Type) [field K] [number_field K] :
Type

The adèle ring of K.

Equations
@[protected, instance]
def number_field.pi.ring (n : ) :
ring (fin n)
Equations
@[protected, instance]
noncomputable def number_field.pi.topological_space (n : ) :
Equations
@[protected, instance]
@[protected, instance]
@[protected, instance]
@[protected, instance]

K is isomorphic to ℚ^(dim_ℚ(K)).

Equations
noncomputable def number_field.linear_map.Rn_to_R_tensor_Qn (n : ) :
(fin n) →ₗ[] (fin n)

The natural linear map from ℝ^n to ℝ ⊗[ℚ] ℚ^n.

Equations

The map ℝ ⊗[ℚ] ℚ^(dim_ℚ(K)) → ℝ ⊗[ℚ] K obtained as a base change of linear_equiv.Q_basis.

Equations
@[protected, instance]
noncomputable def number_field.A_K_f.comm_ring (K : Type) [field K] [number_field K] :
Equations
@[protected, instance]
noncomputable def number_field.A_K.comm_ring (K : Type) [field K] [number_field K] :
Equations
@[protected, instance]
noncomputable def number_field.A_K_f.inhabited (K : Type) [field K] [number_field K] :
Equations
@[protected, instance]
noncomputable def number_field.A_K.inhabited (K : Type) [field K] [number_field K] :
Equations
@[protected, instance]
@[protected, instance]

The ring ℤ is not a field.

The ring of integers of a number field is not a field.

@[protected, instance]

There exists a nonzero prime ideal of the ring of integers of a number field.

Equations
noncomputable def number_field.inj_K_f (K : Type) [field K] [number_field K] :

The map from K to A_K_f K sending k ∈ K ↦ (k)_v.

Equations
noncomputable def number_field.inj_K_f.ring_hom (K : Type) [field K] [number_field K] :

The injection inj_K_f is a ring homomorphism from K to A_K_f K. Hence we can regard K as a subring of A_K_f K.

Equations
noncomputable def number_field.inj_K (K : Type) [field K] [number_field K] :

The map from K to A_K K sending k ∈ K ↦ ((k)_v, 1 ⊗ k).

Equations
noncomputable def number_field.inj_K.ring_hom (K : Type) [field K] [number_field K] :

The injection inj_K is a ring homomorphism from K to A_K K. Hence we can regard K as a subring of A_K K.

Equations