mathlib documentation

number_theory.padics.padic_norm

p-adic norm #

This file defines the p-adic valuation and the p-adic norm on ℚ.

The p-adic valuation on ℚ is the difference of the multiplicities of p in the numerator and denominator of q. This function obeys the standard properties of a valuation, with the appropriate assumptions on p.

The valuation induces a norm on ℚ. This norm is a nonarchimedean absolute value. It takes values in {0} ∪ {1/p^k | k ∈ ℤ}.

Notations #

This file uses the local notation /. for rat.mk.

Implementation notes #

Much, but not all, of this file assumes that p is prime. This assumption is inferred automatically by taking [fact (prime p)] as a type class argument.

References #

Tags #

p-adic, p adic, padic, norm, valuation

def padic_val_nat (p n : ) :

For p ≠ 1, the p-adic valuation of a natural n ≠ 0 is the largest natural number k such that p^k divides z.

If n = 0 or p = 1, then padic_val_nat p q defaults to 0.

Equations
@[protected, simp]
theorem padic_val_nat.zero {p : } :

padic_val_nat p 0 is 0 for any p.

@[protected, simp]
theorem padic_val_nat.one {p : } :

padic_val_nat p 1 is 0 for any p.

@[simp]
theorem padic_val_nat.self {p : } (hp : 1 < p) :

For p ≠ 0, p ≠ 1,padic_val_rat p p` is 1.

theorem padic_val_nat.eq_zero_of_not_dvd {p n : } (h : ¬p n) :
def padic_val_int (p : ) (z : ) :

For p ≠ 1, the p-adic valuation of an integer z ≠ 0 is the largest natural number k such that p^k divides z.

If x = 0 or p = 1, then padic_val_int p q defaults to 0.

Equations
theorem padic_val_int.of_ne_one_ne_zero {p : } {z : } (hp : p 1) (hz : z 0) :
@[protected, simp]
theorem padic_val_int.zero {p : } :

padic_val_int p 0 is 0 for any p.

@[protected, simp]
theorem padic_val_int.one {p : } :

padic_val_int p 1 is 0 for any p.

@[simp]

The p-adic value of an natural is its p-adic_value as an integer

theorem padic_val_int.self {p : } (hp : 1 < p) :

For p ≠ 0, p ≠ 1,padic_val_int p p` is 1.

theorem padic_val_int.eq_zero_of_not_dvd {p : } {z : } (h : ¬p z) :
def padic_val_rat (p : ) (q : ) :

padic_val_rat defines the valuation of a rational q to be the valuation of q.num minus the valuation of q.denom. If q = 0 or p = 1, then padic_val_rat p q defaults to 0.

Equations
@[protected, simp]
theorem padic_val_rat.neg {p : } (q : ) :

padic_val_rat p q is symmetric in q.

@[protected, simp]
theorem padic_val_rat.zero (m : ) :

padic_val_rat p 0 is 0 for any p.

@[protected, simp]
theorem padic_val_rat.one {p : } :

padic_val_rat p 1 is 0 for any p.

@[simp]
theorem padic_val_rat.of_int {p : } {z : } :

The p-adic value of an integer z ≠ 0 is its p-adic_value as a rational

theorem padic_val_rat.of_int_multiplicity {p : } (z : ) (hp : p 1) (hz : z 0) :

The p-adic value of an integer z ≠ 0 is the multiplicity of p in z.

theorem padic_val_rat.multiplicity_sub_multiplicity {p : } {q : } (hp : p 1) (hq : q 0) :
@[simp]

The p-adic value of an integer z ≠ 0 is its p-adic_value as a rational

theorem padic_val_rat.self {p : } (hp : 1 < p) :

For p ≠ 0, p ≠ 1,padic_val_rat p p` is 1.

@[norm_cast]
theorem padic_val_nat_def {p : } [hp : fact (nat.prime p)] {n : } (hn : 0 < n) :

A simplification of padic_val_nat when one input is prime, by analogy with padic_val_rat_def.

@[simp]
theorem padic_val_nat_self (p : ) [fact (nat.prime p)] :
theorem one_le_padic_val_nat_of_dvd {n p : } [prime : fact (nat.prime p)] (n_pos : 0 < n) (div : p n) :
theorem padic_val_rat.finite_int_prime_iff {p : } [p_prime : fact (nat.prime p)] {a : } :

The multiplicity of p : ℕ in a : ℤ is finite exactly when a ≠ 0.

@[protected]
theorem padic_val_rat.defn (p : ) [p_prime : fact (nat.prime p)] {q : } {n d : } (hqz : q 0) (qdf : q = n /. d) :

A rewrite lemma for padic_val_rat p q when q is expressed in terms of rat.mk.

@[protected]
theorem padic_val_rat.mul (p : ) [p_prime : fact (nat.prime p)] {q r : } (hq : q 0) (hr : r 0) :

A rewrite lemma for padic_val_rat p (q * r) with conditions q ≠ 0, r ≠ 0.

@[protected]
theorem padic_val_rat.pow (p : ) [p_prime : fact (nat.prime p)] {q : } (hq : q 0) {k : } :

A rewrite lemma for padic_val_rat p (q^k) with condition q ≠ 0.

@[protected]
theorem padic_val_rat.inv (p : ) [p_prime : fact (nat.prime p)] (q : ) :

A rewrite lemma for padic_val_rat p (q⁻¹) with condition q ≠ 0.

@[protected]
theorem padic_val_rat.div (p : ) [p_prime : fact (nat.prime p)] {q r : } (hq : q 0) (hr : r 0) :

A rewrite lemma for padic_val_rat p (q / r) with conditions q ≠ 0, r ≠ 0.

theorem padic_val_rat.padic_val_rat_le_padic_val_rat_iff (p : ) [p_prime : fact (nat.prime p)] {n₁ n₂ d₁ d₂ : } (hn₁ : n₁ 0) (hn₂ : n₂ 0) (hd₁ : d₁ 0) (hd₂ : d₂ 0) :
padic_val_rat p (n₁ /. d₁) padic_val_rat p (n₂ /. d₂) ∀ (n : ), p ^ n n₁ * d₂p ^ n n₂ * d₁

A condition for padic_val_rat p (n₁ / d₁) ≤ padic_val_rat p (n₂ / d₂), in terms of divisibility byp^n`.

theorem padic_val_rat.le_padic_val_rat_add_of_le (p : ) [p_prime : fact (nat.prime p)] {q r : } (hqr : q + r 0) (h : padic_val_rat p q padic_val_rat p r) :

Sufficient conditions to show that the p-adic valuation of q is less than or equal to the p-adic vlauation of q + r.

theorem padic_val_rat.min_le_padic_val_rat_add (p : ) [p_prime : fact (nat.prime p)] {q r : } (hqr : q + r 0) :

The minimum of the valuations of q and r is less than or equal to the valuation of q + r.

theorem padic_val_rat.sum_pos_of_pos (p : ) [p_prime : fact (nat.prime p)] {n : } {F : } (hF : ∀ (i : ), i < n0 < padic_val_rat p (F i)) (hn0 : ∑ (i : ) in finset.range n, F i 0) :
0 < padic_val_rat p (∑ (i : ) in finset.range n, F i)

A finite sum of rationals with positive p-adic valuation has positive p-adic valuation (if the sum is non-zero).

@[protected]
theorem padic_val_nat.mul (p : ) [p_prime : fact (nat.prime p)] {q r : } (hq : q 0) (hr : r 0) :

A rewrite lemma for padic_val_nat p (q * r) with conditions q ≠ 0, r ≠ 0.

@[protected]
theorem padic_val_nat.div_of_dvd (p : ) [hp : fact (nat.prime p)] {a b : } (h : b a) :
@[protected]
theorem padic_val_nat.div {p : } [p_prime : fact (nat.prime p)] {b : } (dvd : p b) :

Dividing out by a prime factor reduces the padic_val_nat by 1.

@[protected]
theorem padic_val_nat.pow (p q n : ) [fact (nat.prime p)] (hq : q 0) :

A version of padic_val_rat.pow for padic_val_nat

@[protected, simp]
theorem padic_val_nat.prime_pow (p n : ) [fact (nat.prime p)] :
padic_val_nat p (p ^ n) = n
@[protected]
theorem padic_val_nat.div_pow {p : } [p_prime : fact (nat.prime p)] {b k : } (dvd : p ^ k b) :
padic_val_nat p (b / p ^ k) = padic_val_nat p b - k
theorem dvd_of_one_le_padic_val_nat {n p : } (hp : 1 padic_val_nat p n) :
p n
theorem pow_padic_val_nat_dvd {p n : } [fact (nat.prime p)] :
theorem pow_succ_padic_val_nat_not_dvd {p n : } [hp : fact (nat.prime p)] (hn : 0 < n) :
¬p ^ (padic_val_nat p n + 1) n
theorem padic_val_nat_dvd_iff (p : ) [hp : fact (nat.prime p)] (n a : ) :
p ^ n a a = 0 n padic_val_nat p a
theorem padic_val_nat_primes {p q : } [p_prime : fact (nat.prime p)] [q_prime : fact (nat.prime q)] (neq : p q) :
@[protected]
theorem padic_val_nat.div' {p : } [p_prime : fact (nat.prime p)] {m : } (cpm : p.coprime m) {b : } (dvd : m b) :
theorem prod_pow_prime_padic_val_nat (n : ) (hn : n 0) (m : ) (pr : n < m) :
theorem range_pow_padic_val_nat_subset_divisors' {n : } (p : ) [h : fact (nat.prime p)] :
finset.image (λ (t : ), p ^ (t + 1)) (finset.range (padic_val_nat p n)) n.divisors \ {1}
theorem padic_val_int_dvd_iff (p : ) [fact (nat.prime p)] (n : ) (a : ) :
p ^ n a a = 0 n padic_val_int p a
theorem padic_val_int_dvd (p : ) [fact (nat.prime p)] (a : ) :
theorem padic_val_int_self (p : ) [pp : fact (nat.prime p)] :
theorem padic_val_int.mul (p : ) [fact (nat.prime p)] {a b : } (ha : a 0) (hb : b 0) :
theorem padic_val_int_mul_eq_succ (p : ) [pp : fact (nat.prime p)] (a : ) (ha : a 0) :
def padic_norm (p : ) (q : ) :

If q ≠ 0, the p-adic norm of a rational q is p ^ (-(padic_val_rat p q)). If q = 0, the p-adic norm of q is 0.

Equations
@[protected, simp]
theorem padic_norm.eq_zpow_of_nonzero (p : ) {q : } (hq : q 0) :

Unfolds the definition of the p-adic norm of q when q ≠ 0.

@[protected]
theorem padic_norm.nonneg (p : ) (q : ) :

The p-adic norm is nonnegative.

@[protected, simp]
theorem padic_norm.zero (p : ) :

The p-adic norm of 0 is 0.

@[protected, simp]
theorem padic_norm.one (p : ) :

The p-adic norm of 1 is 1.

theorem padic_norm.padic_norm_p {p : } (hp : 1 < p) :

The p-adic norm of p is 1/p if p > 1.

See also padic_norm.padic_norm_p_of_prime for a version that assumes p is prime.

@[simp]

The p-adic norm of p is 1/p if p is prime.

See also padic_norm.padic_norm_p for a version that assumes 1 < p.

theorem padic_norm.padic_norm_of_prime_of_ne {p q : } [p_prime : fact (nat.prime p)] [q_prime : fact (nat.prime q)] (neq : p q) :

The p-adic norm of q is 1 if q is prime and not equal to p.

theorem padic_norm.padic_norm_p_lt_one {p : } (hp : 1 < p) :

The p-adic norm of p is less than 1 if 1 < p.

See also padic_norm.padic_norm_p_lt_one_of_prime for a version assuming prime p.

The p-adic norm of p is less than 1 if p is prime.

See also padic_norm.padic_norm_p_lt_one for a version assuming 1 < p.

@[protected]
theorem padic_norm.values_discrete (p : ) {q : } (hq : q 0) :
∃ (z : ), padic_norm p q = p ^ -z

padic_norm p q takes discrete values p ^ -z for z : ℤ.

@[protected, simp]
theorem padic_norm.neg (p : ) (q : ) :

padic_norm p is symmetric.

@[protected]
theorem padic_norm.nonzero (p : ) [hp : fact (nat.prime p)] {q : } (hq : q 0) :

If q ≠ 0, then padic_norm p q ≠ 0.

theorem padic_norm.zero_of_padic_norm_eq_zero (p : ) [hp : fact (nat.prime p)] {q : } (h : padic_norm p q = 0) :
q = 0

If the p-adic norm of q is 0, then q is 0.

@[protected, simp]
theorem padic_norm.mul (p : ) [hp : fact (nat.prime p)] (q r : ) :
padic_norm p (q * r) = (padic_norm p q) * padic_norm p r

The p-adic norm is multiplicative.

@[protected, simp]
theorem padic_norm.div (p : ) [hp : fact (nat.prime p)] (q r : ) :

The p-adic norm respects division.

@[protected]
theorem padic_norm.of_int (p : ) [hp : fact (nat.prime p)] (z : ) :

The p-adic norm of an integer is at most 1.

@[protected]
theorem padic_norm.nonarchimedean (p : ) [hp : fact (nat.prime p)] {q r : } :
padic_norm p (q + r) max (padic_norm p q) (padic_norm p r)

The p-adic norm is nonarchimedean: the norm of p + q is at most the max of the norm of p and the norm of q.

theorem padic_norm.triangle_ineq (p : ) [hp : fact (nat.prime p)] (q r : ) :

The p-adic norm respects the triangle inequality: the norm of p + q is at most the norm of p plus the norm of q.

@[protected]
theorem padic_norm.sub (p : ) [hp : fact (nat.prime p)] {q r : } :
padic_norm p (q - r) max (padic_norm p q) (padic_norm p r)

The p-adic norm of a difference is at most the max of each component. Restates the archimedean property of the p-adic norm.

theorem padic_norm.add_eq_max_of_ne (p : ) [hp : fact (nat.prime p)] {q r : } (hne : padic_norm p q padic_norm p r) :
padic_norm p (q + r) = max (padic_norm p q) (padic_norm p r)

If the p-adic norms of q and r are different, then the norm of q + r is equal to the max of the norms of q and r.

@[protected, instance]

The p-adic norm is an absolute value: positive-definite and multiplicative, satisfying the triangle inequality.

theorem padic_norm.dvd_iff_norm_le {p : } [hp : fact (nat.prime p)] {n : } {z : } :