mathlib documentation

algebra.big_operators.option

Lemmas about products and sums over finite sets in option α #

In this file we prove formulas for products and sums over finset.insert_none s and finset.erase_none s.

@[simp]
theorem finset.prod_insert_none {α : Type u_1} {M : Type u_2} [comm_monoid M] (f : option α → M) (s : finset α) :
∏ (x : option α) in finset.insert_none s, f x = (f none) * ∏ (x : α) in s, f (some x)
@[simp]
theorem finset.sum_insert_none {α : Type u_1} {M : Type u_2} [add_comm_monoid M] (f : option α → M) (s : finset α) :
∑ (x : option α) in finset.insert_none s, f x = f none + ∑ (x : α) in s, f (some x)
theorem finset.prod_erase_none {α : Type u_1} {M : Type u_2} [comm_monoid M] (f : α → M) (s : finset (option α)) :
∏ (x : α) in finset.erase_none s, f x = ∏ (x : option α) in s, x.elim 1 f
theorem finset.sum_erase_none {α : Type u_1} {M : Type u_2} [add_comm_monoid M] (f : α → M) (s : finset (option α)) :
∑ (x : α) in finset.erase_none s, f x = ∑ (x : option α) in s, x.elim 0 f