The finsupp
counterpart of multiset.antidiagonal
. #
The antidiagonal of s : α →₀ ℕ
consists of
all pairs (t₁, t₂) : (α →₀ ℕ) × (α →₀ ℕ)
such that t₁ + t₂ = s
.
The finsupp
counterpart of multiset.antidiagonal
: the antidiagonal of
s : α →₀ ℕ
consists of all pairs (t₁, t₂) : (α →₀ ℕ) × (α →₀ ℕ)
such that t₁ + t₂ = s
.
The finitely supported function antidiagonal s
is equal to the multiplicities of these pairs.
The antidiagonal of s : α →₀ ℕ
is the finset of all pairs (t₁, t₂) : (α →₀ ℕ) × (α →₀ ℕ)
such that t₁ + t₂ = s
.
Equations
theorem
finsupp.swap_mem_antidiagonal
{α : Type u_1}
{n : α →₀ ℕ}
{f : (α →₀ ℕ) × (α →₀ ℕ)} :
f.swap ∈ n.antidiagonal ↔ f ∈ n.antidiagonal