Changing the index type of a matrix #
This file concerns the map matrix.reindex, mapping a m by n matrix
to an m' by n' matrix, as long as m ≃ m' and n ≃ n'.
Main definitions #
matrix.reindex_linear_equiv R A:matrix.reindexis anR-linear equivalence betweenA-matrices.matrix.reindex_alg_equiv R:matrix.reindexis anR-algebra equivalence betweenR-matrices.
Tags #
matrix, reindex
The natural map that reindexes a matrix's rows and columns with equivalent types,
matrix.reindex, is a linear equivalence.
Equations
- matrix.reindex_linear_equiv R A eₘ eₙ = {to_fun := (matrix.reindex eₘ eₙ).to_fun, map_add' := _, map_smul' := _, inv_fun := (matrix.reindex eₘ eₙ).inv_fun, left_inv := _, right_inv := _}
For square matrices with coefficients in commutative semirings, the natural map that reindexes
a matrix's rows and columns with equivalent types, matrix.reindex, is an equivalence of algebras.
Equations
- matrix.reindex_alg_equiv R e = {to_fun := ⇑(matrix.reindex e e), inv_fun := (matrix.reindex_linear_equiv R R e e).inv_fun, left_inv := _, right_inv := _, map_mul' := _, map_add' := _, commutes' := _}
Reindexing both indices along the same equivalence preserves the determinant.
For the simp version of this lemma, see det_minor_equiv_self.
Reindexing both indices along the same equivalence preserves the determinant.
For the simp version of this lemma, see det_minor_equiv_self.