mathlib documentation

data.polynomial.degree.definitions

Theory of univariate polynomials #

The definitions include degree, monic, leading_coeff

Results include

def polynomial.degree {R : Type u} [semiring R] (p : R[X]) :

degree p is the degree of the polynomial p, i.e. the largest X-exponent in p. degree p = some n when p ≠ 0 and n is the highest power of X that appears in p, otherwise degree 0 = ⊥.

Equations
theorem polynomial.degree_lt_wf {R : Type u} [semiring R] :
well_founded (λ (p q : R[X]), p.degree < q.degree)
@[protected, instance]
Equations
def polynomial.nat_degree {R : Type u} [semiring R] (p : R[X]) :

nat_degree p forces degree p to ℕ, by defining nat_degree 0 = 0.

Equations
def polynomial.leading_coeff {R : Type u} [semiring R] (p : R[X]) :
R

leading_coeff p gives the coefficient of the highest power of X in p

Equations
def polynomial.monic {R : Type u} [semiring R] (p : R[X]) :
Prop

a polynomial is monic if its leading coefficient is 1

Equations
theorem polynomial.monic_of_subsingleton {R : Type u} [semiring R] [subsingleton R] (p : R[X]) :
theorem polynomial.monic.def {R : Type u} [semiring R] {p : R[X]} :
@[protected, instance]
def polynomial.monic.decidable {R : Type u} [semiring R] {p : R[X]} [decidable_eq R] :
Equations
@[simp]
theorem polynomial.monic.leading_coeff {R : Type u} [semiring R] {p : R[X]} (hp : p.monic) :
theorem polynomial.monic.coeff_nat_degree {R : Type u} [semiring R] {p : R[X]} (hp : p.monic) :
@[simp]
theorem polynomial.degree_zero {R : Type u} [semiring R] :
@[simp]
theorem polynomial.nat_degree_zero {R : Type u} [semiring R] :
@[simp]
theorem polynomial.coeff_nat_degree {R : Type u} [semiring R] {p : R[X]} :
theorem polynomial.degree_eq_bot {R : Type u} [semiring R] {p : R[X]} :
p.degree = p = 0
theorem polynomial.degree_of_subsingleton {R : Type u} [semiring R] {p : R[X]} [subsingleton R] :
theorem polynomial.degree_eq_nat_degree {R : Type u} [semiring R] {p : R[X]} (hp : p 0) :
theorem polynomial.degree_eq_iff_nat_degree_eq {R : Type u} [semiring R] {p : R[X]} {n : } (hp : p 0) :
theorem polynomial.degree_eq_iff_nat_degree_eq_of_pos {R : Type u} [semiring R] {p : R[X]} {n : } (hn : 0 < n) :
theorem polynomial.nat_degree_eq_of_degree_eq_some {R : Type u} [semiring R] {p : R[X]} {n : } (h : p.degree = n) :
@[simp]
theorem polynomial.degree_le_nat_degree {R : Type u} [semiring R] {p : R[X]} :
theorem polynomial.nat_degree_eq_of_degree_eq {R : Type u} {S : Type v} [semiring R] {p : R[X]} [semiring S] {q : S[X]} (h : p.degree = q.degree) :
theorem polynomial.le_degree_of_ne_zero {R : Type u} {n : } [semiring R] {p : R[X]} (h : p.coeff n 0) :
theorem polynomial.le_nat_degree_of_ne_zero {R : Type u} {n : } [semiring R] {p : R[X]} (h : p.coeff n 0) :
theorem polynomial.le_nat_degree_of_mem_supp {R : Type u} [semiring R] {p : R[X]} (a : ) :
theorem polynomial.degree_mono {R : Type u} {S : Type v} [semiring R] [semiring S] {f : R[X]} {g : S[X]} (h : f.support g.support) :
theorem polynomial.supp_subset_range {R : Type u} {m : } [semiring R] {p : R[X]} (h : p.nat_degree < m) :
theorem polynomial.degree_le_degree {R : Type u} [semiring R] {p q : R[X]} (h : q.coeff p.nat_degree 0) :
theorem polynomial.degree_ne_of_nat_degree_ne {R : Type u} [semiring R] {p : R[X]} {n : } :
theorem polynomial.nat_degree_le_iff_degree_le {R : Type u} [semiring R] {p : R[X]} {n : } :
theorem polynomial.nat_degree_le_nat_degree {R : Type u} {S : Type v} [semiring R] {p : R[X]} [semiring S] {q : S[X]} (hpq : p.degree q.degree) :
@[simp]
theorem polynomial.degree_C {R : Type u} {a : R} [semiring R] (ha : a 0) :
theorem polynomial.degree_C_le {R : Type u} {a : R} [semiring R] :
theorem polynomial.degree_C_lt {R : Type u} {a : R} [semiring R] :
theorem polynomial.degree_one_le {R : Type u} [semiring R] :
@[simp]
theorem polynomial.nat_degree_C {R : Type u} [semiring R] (a : R) :
@[simp]
theorem polynomial.nat_degree_one {R : Type u} [semiring R] :
@[simp]
theorem polynomial.nat_degree_nat_cast {R : Type u} [semiring R] (n : ) :
@[simp]
theorem polynomial.degree_monomial {R : Type u} {a : R} [semiring R] (n : ) (ha : a 0) :
@[simp]
theorem polynomial.degree_C_mul_X_pow {R : Type u} {a : R} [semiring R] (n : ) (ha : a 0) :
theorem polynomial.degree_C_mul_X {R : Type u} {a : R} [semiring R] (ha : a 0) :
theorem polynomial.degree_monomial_le {R : Type u} [semiring R] (n : ) (a : R) :
theorem polynomial.degree_C_mul_X_pow_le {R : Type u} [semiring R] (n : ) (a : R) :
theorem polynomial.degree_C_mul_X_le {R : Type u} [semiring R] (a : R) :
@[simp]
theorem polynomial.nat_degree_C_mul_X_pow {R : Type u} [semiring R] (n : ) (a : R) (ha : a 0) :
@[simp]
theorem polynomial.nat_degree_C_mul_X {R : Type u} [semiring R] (a : R) (ha : a 0) :
@[simp]
theorem polynomial.nat_degree_monomial {R : Type u} [semiring R] [decidable_eq R] (i : ) (r : R) :
theorem polynomial.coeff_eq_zero_of_degree_lt {R : Type u} {n : } [semiring R] {p : R[X]} (h : p.degree < n) :
p.coeff n = 0
theorem polynomial.coeff_eq_zero_of_nat_degree_lt {R : Type u} [semiring R] {p : R[X]} {n : } (h : p.nat_degree < n) :
p.coeff n = 0
@[simp]
theorem polynomial.coeff_nat_degree_succ_eq_zero {R : Type u} [semiring R] {p : R[X]} :
p.coeff (p.nat_degree + 1) = 0
theorem polynomial.ite_le_nat_degree_coeff {R : Type u} [semiring R] (p : R[X]) (n : ) (I : decidable (n < 1 + p.nat_degree)) :
ite (n < 1 + p.nat_degree) (p.coeff n) 0 = p.coeff n
theorem polynomial.as_sum_support {R : Type u} [semiring R] (p : R[X]) :
p = ∑ (i : ) in p.support, (polynomial.monomial i) (p.coeff i)
theorem polynomial.as_sum_support_C_mul_X_pow {R : Type u} [semiring R] (p : R[X]) :
p = ∑ (i : ) in p.support, (polynomial.C (p.coeff i)) * polynomial.X ^ i
theorem polynomial.sum_over_range' {R : Type u} {S : Type v} [semiring R] [add_comm_monoid S] (p : R[X]) {f : R → S} (h : ∀ (n : ), f n 0 = 0) (n : ) (w : p.nat_degree < n) :
p.sum f = ∑ (a : ) in finset.range n, f a (p.coeff a)

We can reexpress a sum over p.support as a sum over range n, for any n satisfying p.nat_degree < n.

theorem polynomial.sum_over_range {R : Type u} {S : Type v} [semiring R] [add_comm_monoid S] (p : R[X]) {f : R → S} (h : ∀ (n : ), f n 0 = 0) :
p.sum f = ∑ (a : ) in finset.range (p.nat_degree + 1), f a (p.coeff a)

We can reexpress a sum over p.support as a sum over range (p.nat_degree + 1).

theorem polynomial.sum_fin {R : Type u} {S : Type v} [semiring R] [add_comm_monoid S] (f : R → S) (hf : ∀ (i : ), f i 0 = 0) {n : } {p : R[X]} (hn : p.degree < n) :
∑ (i : fin n), f i (p.coeff i) = p.sum f
theorem polynomial.as_sum_range' {R : Type u} [semiring R] (p : R[X]) (n : ) (w : p.nat_degree < n) :
p = ∑ (i : ) in finset.range n, (polynomial.monomial i) (p.coeff i)
theorem polynomial.as_sum_range {R : Type u} [semiring R] (p : R[X]) :
p = ∑ (i : ) in finset.range (p.nat_degree + 1), (polynomial.monomial i) (p.coeff i)
theorem polynomial.as_sum_range_C_mul_X_pow {R : Type u} [semiring R] (p : R[X]) :
p = ∑ (i : ) in finset.range (p.nat_degree + 1), (polynomial.C (p.coeff i)) * polynomial.X ^ i
theorem polynomial.coeff_ne_zero_of_eq_degree {R : Type u} {n : } [semiring R] {p : R[X]} (hn : p.degree = n) :
p.coeff n 0
theorem polynomial.degree_X_pow_le {R : Type u} [semiring R] (n : ) :
theorem polynomial.support_C_mul_X_pow {R : Type u} [semiring R] (c : R) (n : ) :
theorem polynomial.mem_support_C_mul_X_pow {R : Type u} [semiring R] {n a : } {c : R} (h : a ((polynomial.C c) * polynomial.X ^ n).support) :
a = n
theorem polynomial.le_degree_of_mem_supp {R : Type u} [semiring R] {p : R[X]} (a : ) :
a p.supporta p.degree
theorem polynomial.nonempty_support_iff {R : Type u} [semiring R] {p : R[X]} :
theorem polynomial.support_C_mul_X_pow_nonzero {R : Type u} [semiring R] {c : R} {n : } (h : c 0) :
@[simp]
theorem polynomial.degree_one {R : Type u} [semiring R] [nontrivial R] :
1.degree = 0
@[simp]
theorem polynomial.degree_X {R : Type u} [semiring R] [nontrivial R] :
@[simp]
theorem polynomial.coeff_mul_X_sub_C {R : Type u} [ring R] {p : R[X]} {r : R} {a : } :
(p * (polynomial.X - polynomial.C r)).coeff (a + 1) = p.coeff a - (p.coeff (a + 1)) * r
@[simp]
theorem polynomial.degree_neg {R : Type u} [ring R] (p : R[X]) :
@[simp]
theorem polynomial.nat_degree_neg {R : Type u} [ring R] (p : R[X]) :
@[simp]
theorem polynomial.nat_degree_int_cast {R : Type u} [ring R] (n : ) :
def polynomial.next_coeff {R : Type u} [semiring R] (p : R[X]) :
R

The second-highest coefficient, or 0 for constants

Equations
@[simp]
theorem polynomial.next_coeff_C_eq_zero {R : Type u} [semiring R] (c : R) :
theorem polynomial.next_coeff_of_pos_nat_degree {R : Type u} [semiring R] (p : R[X]) (hp : 0 < p.nat_degree) :
theorem polynomial.coeff_nat_degree_eq_zero_of_degree_lt {R : Type u} [semiring R] {p q : R[X]} (h : p.degree < q.degree) :
theorem polynomial.ne_zero_of_degree_gt {R : Type u} [semiring R] {p : R[X]} {n : with_bot } (h : n < p.degree) :
p 0
theorem polynomial.ne_zero_of_degree_ge_degree {R : Type u} [semiring R] {p q : R[X]} (hpq : p.degree q.degree) (hp : p 0) :
q 0
theorem polynomial.ne_zero_of_nat_degree_gt {R : Type u} [semiring R] {p : R[X]} {n : } (h : n < p.nat_degree) :
p 0
theorem polynomial.degree_lt_degree {R : Type u} [semiring R] {p q : R[X]} (h : p.nat_degree < q.nat_degree) :
theorem polynomial.nat_degree_lt_nat_degree_iff {R : Type u} [semiring R] {p q : R[X]} (hp : p 0) :
theorem polynomial.eq_C_of_degree_le_zero {R : Type u} [semiring R] {p : R[X]} (h : p.degree 0) :
theorem polynomial.eq_C_of_degree_eq_zero {R : Type u} [semiring R] {p : R[X]} (h : p.degree = 0) :
theorem polynomial.degree_le_zero_iff {R : Type u} [semiring R] {p : R[X]} :
theorem polynomial.degree_add_le {R : Type u} [semiring R] (p q : R[X]) :
theorem polynomial.degree_add_le_of_degree_le {R : Type u} [semiring R] {p q : R[X]} {n : } (hp : p.degree n) (hq : q.degree n) :
(p + q).degree n
theorem polynomial.nat_degree_add_le {R : Type u} [semiring R] (p q : R[X]) :
theorem polynomial.nat_degree_add_le_of_degree_le {R : Type u} [semiring R] {p q : R[X]} {n : } (hp : p.nat_degree n) (hq : q.nat_degree n) :
(p + q).nat_degree n
@[simp]
theorem polynomial.leading_coeff_zero {R : Type u} [semiring R] :
@[simp]
theorem polynomial.leading_coeff_eq_zero {R : Type u} [semiring R] {p : R[X]} :
theorem polynomial.leading_coeff_ne_zero {R : Type u} [semiring R] {p : R[X]} :
theorem polynomial.nat_degree_mem_support_of_nonzero {R : Type u} [semiring R] {p : R[X]} (H : p 0) :
theorem polynomial.nat_degree_eq_support_max' {R : Type u} [semiring R] {p : R[X]} (h : p 0) :
theorem polynomial.degree_add_eq_left_of_degree_lt {R : Type u} [semiring R] {p q : R[X]} (h : q.degree < p.degree) :
(p + q).degree = p.degree
theorem polynomial.degree_add_eq_right_of_degree_lt {R : Type u} [semiring R] {p q : R[X]} (h : p.degree < q.degree) :
(p + q).degree = q.degree
theorem polynomial.degree_add_C {R : Type u} {a : R} [semiring R] {p : R[X]} (hp : 0 < p.degree) :
theorem polynomial.degree_erase_le {R : Type u} [semiring R] (p : R[X]) (n : ) :
theorem polynomial.degree_erase_lt {R : Type u} [semiring R] {p : R[X]} (hp : p 0) :
theorem polynomial.degree_update_le {R : Type u} [semiring R] (p : R[X]) (n : ) (a : R) :
theorem polynomial.degree_sum_le {R : Type u} [semiring R] {ι : Type u_1} (s : finset ι) (f : ι → R[X]) :
(∑ (i : ι) in s, f i).degree s.sup (λ (b : ι), (f b).degree)
theorem polynomial.degree_mul_le {R : Type u} [semiring R] (p q : R[X]) :
theorem polynomial.degree_pow_le {R : Type u} [semiring R] (p : R[X]) (n : ) :
(p ^ n).degree n p.degree
@[simp]
theorem polynomial.leading_coeff_monomial {R : Type u} [semiring R] (a : R) (n : ) :
@[simp]
theorem polynomial.leading_coeff_C {R : Type u} [semiring R] (a : R) :
@[simp]
theorem polynomial.leading_coeff_X_pow {R : Type u} [semiring R] (n : ) :
@[simp]
@[simp]
theorem polynomial.monic_X_pow {R : Type u} [semiring R] (n : ) :
@[simp]
theorem polynomial.monic_X {R : Type u} [semiring R] :
@[simp]
theorem polynomial.leading_coeff_one {R : Type u} [semiring R] :
@[simp]
theorem polynomial.monic_one {R : Type u} [semiring R] :
theorem polynomial.monic.ne_zero {R : Type u_1} [semiring R] [nontrivial R] {p : R[X]} (hp : p.monic) :
p 0
theorem polynomial.monic.ne_zero_of_ne {R : Type u} [semiring R] (h : 0 1) {p : R[X]} (hp : p.monic) :
p 0
theorem polynomial.monic.ne_zero_of_polynomial_ne {R : Type u} [semiring R] {p q r : R[X]} (hp : p.monic) (hne : q r) :
p 0
theorem polynomial.leading_coeff_add_of_degree_lt {R : Type u} [semiring R] {p q : R[X]} (h : p.degree < q.degree) :
@[simp]
theorem polynomial.degree_mul' {R : Type u} [semiring R] {p q : R[X]} (h : (p.leading_coeff) * q.leading_coeff 0) :
(p * q).degree = p.degree + q.degree
theorem polynomial.monic.degree_mul {R : Type u} [semiring R] {p q : R[X]} (hq : q.monic) :
(p * q).degree = p.degree + q.degree
theorem polynomial.nat_degree_mul' {R : Type u} [semiring R] {p q : R[X]} (h : (p.leading_coeff) * q.leading_coeff 0) :
theorem polynomial.leading_coeff_pow' {R : Type u} {n : } [semiring R] {p : R[X]} :
theorem polynomial.degree_pow' {R : Type u} [semiring R] {p : R[X]} {n : } :
p.leading_coeff ^ n 0(p ^ n).degree = n p.degree
theorem polynomial.nat_degree_pow' {R : Type u} [semiring R] {p : R[X]} {n : } (h : p.leading_coeff ^ n 0) :
theorem polynomial.leading_coeff_monic_mul {R : Type u} [semiring R] {p q : R[X]} (hp : p.monic) :
theorem polynomial.leading_coeff_mul_monic {R : Type u} [semiring R] {p q : R[X]} (hq : q.monic) :
@[simp]
theorem polynomial.leading_coeff_mul_X_pow {R : Type u} [semiring R] {p : R[X]} {n : } :
@[simp]
theorem polynomial.nat_degree_mul_le {R : Type u} [semiring R] {p q : R[X]} :
theorem polynomial.nat_degree_pow_le {R : Type u} [semiring R] {p : R[X]} {n : } :
@[simp]
theorem polynomial.coeff_pow_mul_nat_degree {R : Type u} [semiring R] (p : R[X]) (n : ) :
(p ^ n).coeff (n * p.nat_degree) = p.leading_coeff ^ n
theorem polynomial.subsingleton_of_monic_zero {R : Type u} [semiring R] (h : 0.monic) :
(∀ (p q : R[X]), p = q) ∀ (a b : R), a = b
theorem polynomial.zero_le_degree_iff {R : Type u} [semiring R] {p : R[X]} :
0 p.degree p 0
theorem polynomial.degree_nonneg_iff_ne_zero {R : Type u} [semiring R] {p : R[X]} :
0 p.degree p 0
theorem polynomial.degree_le_iff_coeff_zero {R : Type u} [semiring R] (f : R[X]) (n : with_bot ) :
f.degree n ∀ (m : ), n < mf.coeff m = 0
theorem polynomial.degree_lt_iff_coeff_zero {R : Type u} [semiring R] (f : R[X]) (n : ) :
f.degree < n ∀ (m : ), n mf.coeff m = 0
theorem polynomial.degree_smul_le {R : Type u} [semiring R] (a : R) (p : R[X]) :
theorem polynomial.nat_degree_smul_le {R : Type u} [semiring R] (a : R) (p : R[X]) :
theorem polynomial.degree_lt_degree_mul_X {R : Type u} [semiring R] {p : R[X]} (hp : p 0) :
theorem polynomial.nat_degree_pos_iff_degree_pos {R : Type u} [semiring R] {p : R[X]} :
theorem polynomial.eq_C_of_nat_degree_le_zero {R : Type u} [semiring R] {p : R[X]} (h : p.nat_degree 0) :
theorem polynomial.eq_C_of_nat_degree_eq_zero {R : Type u} [semiring R] {p : R[X]} (h : p.nat_degree = 0) :
theorem polynomial.ne_zero_of_coe_le_degree {R : Type u} {n : } [semiring R] {p : R[X]} (hdeg : n p.degree) :
p 0
theorem polynomial.le_nat_degree_of_coe_le_degree {R : Type u} {n : } [semiring R] {p : R[X]} (hdeg : n p.degree) :
theorem polynomial.degree_sum_fin_lt {R : Type u} [semiring R] {n : } (f : fin n → R) :
(∑ (i : fin n), (polynomial.C (f i)) * polynomial.X ^ i).degree < n
@[simp]
theorem polynomial.degree_linear {R : Type u} {a b : R} [semiring R] (ha : a 0) :
@[simp]
theorem polynomial.nat_degree_linear {R : Type u} {a b : R} [semiring R] (ha : a 0) :
@[simp]
theorem polynomial.leading_coeff_linear {R : Type u} {a b : R} [semiring R] (ha : a 0) :
@[simp]
theorem polynomial.degree_quadratic {R : Type u} {a b c : R} [semiring R] (ha : a 0) :
@[simp]
@[simp]
@[simp]
theorem polynomial.degree_X_pow {R : Type u} [semiring R] [nontrivial R] (n : ) :
@[simp]
theorem polynomial.nat_degree_X_pow {R : Type u} [semiring R] [nontrivial R] (n : ) :
@[simp]
theorem polynomial.degree_mul_X {R : Type u} [semiring R] [nontrivial R] {p : R[X]} :
@[simp]
theorem polynomial.degree_mul_X_pow {R : Type u} {n : } [semiring R] [nontrivial R] {p : R[X]} :
theorem polynomial.degree_sub_le {R : Type u} [ring R] (p q : R[X]) :
theorem polynomial.degree_sub_lt {R : Type u} [ring R] {p q : R[X]} (hd : p.degree = q.degree) (hp0 : p 0) (hlc : p.leading_coeff = q.leading_coeff) :
(p - q).degree < p.degree
theorem polynomial.degree_sub_eq_left_of_degree_lt {R : Type u} [ring R] {p q : R[X]} (h : q.degree < p.degree) :
(p - q).degree = p.degree
theorem polynomial.degree_sub_eq_right_of_degree_lt {R : Type u} [ring R] {p q : R[X]} (h : p.degree < q.degree) :
(p - q).degree = q.degree
@[simp]
theorem polynomial.degree_X_add_C {R : Type u} [nontrivial R] [semiring R] (a : R) :
@[simp]
@[simp]
theorem polynomial.degree_X_pow_add_C {R : Type u} [nontrivial R] [semiring R] {n : } (hn : 0 < n) (a : R) :
theorem polynomial.X_pow_add_C_ne_zero {R : Type u} [nontrivial R] [semiring R] {n : } (hn : 0 < n) (a : R) :
theorem polynomial.zero_nmem_multiset_map_X_add_C {R : Type u} [nontrivial R] [semiring R] {α : Type u_1} (m : multiset α) (f : α → R) :
0 multiset.map (λ (a : α), polynomial.X + polynomial.C (f a)) m
@[simp]
theorem polynomial.leading_coeff_X_pow_add_C {R : Type u} [semiring R] {n : } (hn : 0 < n) {r : R} :
@[simp]
@[simp]
theorem polynomial.leading_coeff_X_pow_add_one {R : Type u} [semiring R] {n : } (hn : 0 < n) :
@[simp]
theorem polynomial.leading_coeff_pow_X_add_C {R : Type u} [semiring R] (r : R) (i : ) :
@[simp]
theorem polynomial.leading_coeff_X_pow_sub_C {R : Type u} [ring R] {n : } (hn : 0 < n) {r : R} :
@[simp]
theorem polynomial.leading_coeff_X_pow_sub_one {R : Type u} [ring R] {n : } (hn : 0 < n) :
@[simp]
theorem polynomial.degree_X_sub_C {R : Type u} [ring R] [nontrivial R] (a : R) :
@[simp]
theorem polynomial.nat_degree_X_sub_C {R : Type u} [ring R] [nontrivial R] (x : R) :
@[simp]
theorem polynomial.next_coeff_X_sub_C {S : Type v} [ring S] (c : S) :
theorem polynomial.degree_X_pow_sub_C {R : Type u} [ring R] [nontrivial R] {n : } (hn : 0 < n) (a : R) :
theorem polynomial.X_pow_sub_C_ne_zero {R : Type u} [ring R] [nontrivial R] {n : } (hn : 0 < n) (a : R) :
theorem polynomial.X_sub_C_ne_zero {R : Type u} [ring R] [nontrivial R] (r : R) :
theorem polynomial.zero_nmem_multiset_map_X_sub_C {R : Type u} [ring R] [nontrivial R] {α : Type u_1} (m : multiset α) (f : α → R) :
0 multiset.map (λ (a : α), polynomial.X - polynomial.C (f a)) m
theorem polynomial.nat_degree_X_pow_sub_C {R : Type u} [ring R] [nontrivial R] {n : } {r : R} :
@[simp]
@[simp]
theorem polynomial.degree_mul {R : Type u} [semiring R] [no_zero_divisors R] {p q : R[X]} :
(p * q).degree = p.degree + q.degree

degree as a monoid homomorphism between R[X] and multiplicative (with_bot ℕ). This is useful to prove results about multiplication and degree.

Equations
@[simp]
theorem polynomial.degree_pow {R : Type u} [semiring R] [no_zero_divisors R] [nontrivial R] (p : R[X]) (n : ) :
(p ^ n).degree = n p.degree
@[simp]

polynomial.leading_coeff bundled as a monoid_hom when R has no_zero_divisors, and thus leading_coeff is multiplicative

Equations
@[simp]
theorem polynomial.leading_coeff_pow {R : Type u} [semiring R] [no_zero_divisors R] (p : R[X]) (n : ) :