Quotients by submodules #
- If
p
is a submodule ofM
,M ⧸ p
is the quotient ofM
with respect top
: that is, elements ofM
are identified if their difference is inp
. This is itself a module.
The equivalence relation associated to a submodule p
, defined by x ≈ y
iff y - x ∈ p
.
The quotient of a module M
by a submodule p ⊆ M
.
Equations
- submodule.has_quotient = {quotient' := λ (p : submodule R M), quotient p.quotient_rel}
Map associating to an element of M
the corresponding element of M/p
,
when p
is a submodule of M
.
Equations
Equations
Equations
Equations
- submodule.quotient.has_quotient.quotient.has_add p = {add := λ (a b : M ⧸ p), quotient.lift_on₂' a b (λ (a b : M), submodule.quotient.mk (a + b)) _}
Equations
- submodule.quotient.has_quotient.quotient.has_neg p = {neg := λ (a : M ⧸ p), quotient.lift_on' a (λ (a : M), submodule.quotient.mk (-a)) _}
Equations
- submodule.quotient.has_quotient.quotient.has_sub p = {sub := λ (a b : M ⧸ p), quotient.lift_on₂' a b (λ (a b : M), submodule.quotient.mk (a - b)) _}
Equations
- submodule.quotient.add_comm_group p = {add := has_add.add (submodule.quotient.has_quotient.quotient.has_add p), add_assoc := _, zero := 0, zero_add := _, add_zero := _, nsmul := λ (n : ℕ) (x : M ⧸ p), quotient.lift_on' x (λ (x : M), submodule.quotient.mk (n • x)) _, nsmul_zero' := _, nsmul_succ' := _, neg := has_neg.neg (submodule.quotient.has_quotient.quotient.has_neg p), sub := has_sub.sub (submodule.quotient.has_quotient.quotient.has_sub p), sub_eq_add_neg := _, zsmul := λ (n : ℤ) (x : M ⧸ p), quotient.lift_on' x (λ (x : M), submodule.quotient.mk (n • x)) _, zsmul_zero' := _, zsmul_succ' := _, zsmul_neg' := _, add_left_neg := _, add_comm := _}
Equations
- submodule.quotient.has_scalar' P = {smul := λ (a : S), quotient.map' (has_scalar.smul a) _}
Shortcut to help the elaborator in the common case.
Equations
Equations
Equations
Equations
- submodule.quotient.module' P = function.surjective.module S {to_fun := submodule.quotient.mk P, map_zero' := _, map_add' := _} _ _
Equations
The quotient of P
as an S
-submodule is the same as the quotient of P
as an R
-submodule,
where P : submodule R M
.
Equations
- submodule.quotient.restrict_scalars_equiv S P = {to_fun := (quotient.congr_right _).to_fun, map_add' := _, map_smul' := _, inv_fun := (quotient.congr_right _).inv_fun, left_inv := _, right_inv := _}
Two linear_map
s from a quotient module are equal if their compositions with
submodule.mkq
are equal.
The map from the quotient of M
by a submodule p
to M₂
induced by a linear map f : M → M₂
vanishing on p
, as a linear map.
The map from the quotient of M
by submodule p
to the quotient of M₂
by submodule q
along
f : M → M₂
is linear.
Given submodules p ⊆ M
, p₂ ⊆ M₂
, p₃ ⊆ M₃
and maps f : M → M₂
, g : M₂ → M₃
inducing
mapq f : M ⧸ p → M₂ ⧸ p₂
and mapq g : M₂ ⧸ p₂ → M₃ ⧸ p₃
then
mapq (g ∘ f) = (mapq g) ∘ (mapq f)
.
The correspondence theorem for modules: there is an order isomorphism between submodules of the
quotient of M
by p
, and submodules of M
larger than p
.
Equations
- submodule.comap_mkq.rel_iso p = {to_equiv := {to_fun := λ (p' : submodule R (M ⧸ p)), ⟨submodule.comap p.mkq p', _⟩, inv_fun := λ (q : {p' // p ≤ p'}), submodule.map p.mkq ↑q, left_inv := _, right_inv := _}, map_rel_iff' := _}
The ordering on submodules of the quotient of M
by p
embeds into the ordering on submodules
of M
.
Equations
- submodule.comap_mkq.order_embedding p = (rel_iso.to_rel_embedding (submodule.comap_mkq.rel_iso p)).trans (subtype.rel_embedding has_le.le (λ (p' : submodule R M), p ≤ p'))
An epimorphism is surjective.
If p = ⊥
, then M / p ≃ₗ[R] M
.
Equations
- p.quot_equiv_of_eq_bot hp = linear_equiv.of_linear (p.liftq linear_map.id _) p.mkq _ _
Quotienting by equal submodules gives linearly equivalent quotients.
Equations
- p.quot_equiv_of_eq p' h = {to_fun := (quotient.congr (equiv.refl M) _).to_fun, map_add' := _, map_smul' := _, inv_fun := (quotient.congr (equiv.refl M) _).inv_fun, left_inv := _, right_inv := _}
Given modules M
, M₂
over a commutative ring, together with submodules p ⊆ M
, q ⊆ M₂
,
the natural map $\{f ∈ Hom(M, M₂) | f(p) ⊆ q \} \to Hom(M/p, M₂/q)$ is linear.
Equations
- p.mapq_linear q = {to_fun := λ (f : ↥(p.compatible_maps q)), p.mapq q f.val _, map_add' := _, map_smul' := _}