Constructions relating multilinear maps and tensor products. #
Given two multilinear maps (ι₁ → N) → N₁
and (ι₂ → N) → N₂
, this produces the map
(ι₁ ⊕ ι₂ → N) → N₁ ⊗ N₂
by taking the coproduct of the domain and the tensor product
of the codomain.
This can be thought of as combining equiv.sum_arrow_equiv_prod_arrow.symm
with
tensor_product.map
, noting that the two operations can't be separated as the intermediate result
is not a multilinear_map
.
While this can be generalized to work for dependent Π i : ι₁, N'₁ i
instead of ι₁ → N
, doing so
introduces sum.elim N'₁ N'₂
types in the result which are difficult to work with and not defeq
to the simple case defined here. See this zulip thread.
A more bundled version of multilinear_map.dom_coprod
that maps
((ι₁ → N) → N₁) ⊗ ((ι₂ → N) → N₂)
to (ι₁ ⊕ ι₂ → N) → N₁ ⊗ N₂
.
Equations
- multilinear_map.dom_coprod' = tensor_product.lift (linear_map.mk₂ R multilinear_map.dom_coprod multilinear_map.dom_coprod'._proof_7 multilinear_map.dom_coprod'._proof_8 multilinear_map.dom_coprod'._proof_9 multilinear_map.dom_coprod'._proof_10)
When passed an equiv.sum_congr
, multilinear_map.dom_dom_congr
distributes over
multilinear_map.dom_coprod
.