Finite intervals of positive naturals #
This file proves that ℕ+
is a locally_finite_order
and calculates the cardinality of its
intervals as finsets and fintypes.
@[protected, instance]
Equations
- pnat.locally_finite_order = subtype.locally_finite_order (λ (n : ℕ), 0 < n)
theorem
pnat.Icc_eq_finset_subtype
(a b : ℕ+) :
finset.Icc a b = finset.subtype (λ (n : ℕ), 0 < n) (finset.Icc ↑a ↑b)
theorem
pnat.Ico_eq_finset_subtype
(a b : ℕ+) :
finset.Ico a b = finset.subtype (λ (n : ℕ), 0 < n) (finset.Ico ↑a ↑b)
theorem
pnat.Ioc_eq_finset_subtype
(a b : ℕ+) :
finset.Ioc a b = finset.subtype (λ (n : ℕ), 0 < n) (finset.Ioc ↑a ↑b)
theorem
pnat.Ioo_eq_finset_subtype
(a b : ℕ+) :
finset.Ioo a b = finset.subtype (λ (n : ℕ), 0 < n) (finset.Ioo ↑a ↑b)
theorem
pnat.map_subtype_embedding_Icc
(a b : ℕ+) :
finset.map (function.embedding.subtype (λ (n : ℕ), 0 < n)) (finset.Icc a b) = finset.Icc ↑a ↑b
theorem
pnat.map_subtype_embedding_Ico
(a b : ℕ+) :
finset.map (function.embedding.subtype (λ (n : ℕ), 0 < n)) (finset.Ico a b) = finset.Ico ↑a ↑b
theorem
pnat.map_subtype_embedding_Ioc
(a b : ℕ+) :
finset.map (function.embedding.subtype (λ (n : ℕ), 0 < n)) (finset.Ioc a b) = finset.Ioc ↑a ↑b
theorem
pnat.map_subtype_embedding_Ioo
(a b : ℕ+) :
finset.map (function.embedding.subtype (λ (n : ℕ), 0 < n)) (finset.Ioo a b) = finset.Ioo ↑a ↑b