Finite intervals of finitely supported functions #
This file provides the locally_finite_order
instance for ι →₀ α
when α
itself is locally
finite and calculates the cardinality of its finite intervals.
Main declarations #
finsupp.range_singleton
: Postcomposition withhas_singleton.singleton
onfinset
as afinsupp
.finsupp.range_Icc
: Postcomposition withfinset.Icc
as afinsupp
.
Both these definitions use the fact that 0 = {0}
to ensure that the resulting function is finitely
supported.
@[simp]
theorem
finsupp.range_singleton_to_fun
{ι : Type u_1}
{α : Type u_2}
[has_zero α]
(f : ι →₀ α)
(i : ι) :
⇑(f.range_singleton) i = {⇑f i}
@[simp]
Pointwise finset.singleton
bundled as a finsupp
.
Equations
- f.range_singleton = {support := f.support, to_fun := λ (i : ι), {⇑f i}, mem_support_to_fun := _}
theorem
finsupp.mem_range_singleton_apply_iff
{ι : Type u_1}
{α : Type u_2}
[has_zero α]
{f : ι →₀ α}
{i : ι}
{a : α} :
@[simp]
theorem
finsupp.range_Icc_to_fun
{ι : Type u_1}
{α : Type u_2}
[has_zero α]
[partial_order α]
[locally_finite_order α]
(f g : ι →₀ α)
(i : ι) :
@[simp]
theorem
finsupp.range_Icc_support
{ι : Type u_1}
{α : Type u_2}
[has_zero α]
[partial_order α]
[locally_finite_order α]
(f g : ι →₀ α) :
noncomputable
def
finsupp.range_Icc
{ι : Type u_1}
{α : Type u_2}
[has_zero α]
[partial_order α]
[locally_finite_order α]
(f g : ι →₀ α) :
Pointwise finset.Icc
bundled as a finsupp
.
theorem
finsupp.mem_range_Icc_apply_iff
{ι : Type u_1}
{α : Type u_2}
[has_zero α]
[partial_order α]
[locally_finite_order α]
{f g : ι →₀ α}
{i : ι}
{a : α} :
@[protected, instance]
noncomputable
def
finsupp.locally_finite_order
{ι : Type u_1}
{α : Type u_2}
[partial_order α]
[has_zero α]
[locally_finite_order α] :
locally_finite_order (ι →₀ α)
theorem
finsupp.card_Icc
{ι : Type u_1}
{α : Type u_2}
[partial_order α]
[has_zero α]
[locally_finite_order α]
(f g : ι →₀ α) :
(finset.Icc f g).card = ∏ (i : ι) in f.support ∪ g.support, (finset.Icc (⇑f i) (⇑g i)).card
theorem
finsupp.card_Ico
{ι : Type u_1}
{α : Type u_2}
[partial_order α]
[has_zero α]
[locally_finite_order α]
(f g : ι →₀ α) :
theorem
finsupp.card_Ioc
{ι : Type u_1}
{α : Type u_2}
[partial_order α]
[has_zero α]
[locally_finite_order α]
(f g : ι →₀ α) :
theorem
finsupp.card_Ioo
{ι : Type u_1}
{α : Type u_2}
[partial_order α]
[has_zero α]
[locally_finite_order α]
(f g : ι →₀ α) :